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Abstract: We consider the stress tensor in the massless Sine–Gordon model in
the finite regime β2 < 4π of the theory. We prove convergence of the renormalised
perturbative series for the interacting stress tensor defined using the Bogoliubov
formula in an arbitrary Hadamard state, even for the case that the smearing is
only along a one-dimensional time-like worldline and not in space-time. We then
show that the interacting energy density, as seen by an observer following this
worldline, satisfies an absolute lower bound, that is a bound independent of the
quantum state. Our proof employs and generalises existing techniques developed
for free theories by Flanagan, Fewster and Smith.

1. Introduction

One of the fundamental observables both in classical and quantum field the-
ory is the stress tensor (or stress-energy or energy-momentum tensor) Tµν . It
enters the Einstein equations in General Relativity, linking the distribution of
matter to the curvature of spacetime. In this context, the stress tensor should
fulfill certain positivity conditions, such as the weak energy condition, the strong
energy condition, or the null energy condition, which imply constraints on ex-
otic spacetime geometries. Assuming such conditions, various important results
were derived such as the Penrose and Hawking singularity theorems [1], the
Schoen–Yau positive mass theorem [2, 3], and Hawking’s chronology protection
results [4].

However, in quantum field theory (QFT) these energy conditions are violated,
and moreover one can find states in which the energy density at any single point
can have arbitrarily negative expectation values [5,6]. Therefore, one might ask
whether quantum fields are compatible with the energy conditions in the sin-
gularity theorems, or whether they allow for exotic spacetime geometries, such
as wormholes. Moreover, unbounded negative energy densities have physically
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undesirable consequences regarding the validity of the second law of thermody-
namics at macroscopic scales. To avoid these, there must be constraints on how
negative energy densities of quantum fields can be. These constraints are called
Quantum Energy Inequalities (QEIs), and were first investigated by Ford [7].
They are reminiscent of the classical energy conditions, suggesting that singu-
larity or other theorems might still be obeyed by quantum fields, possibly in
some weakened condition [8–11].

Technically, these bounds are of the following type: consider the energy den-
sity operator T 00(t, x⃗) averaged in time with the square of a real-valued smooth
function:

T 00(f2) ≡
∫

T 00(t, x⃗)f2(t) dt . (1)

A QEI is an inequality of the form

ω
(
T 00(f2)

)
≥ −Kω(f) (2)

for all sufficiently regular quantum states ω of the system, where the constant
Kω depends on the smearing function f and possibly on the state ω. The QEI is
called state-independent or absolute if K is actually independent of ω and only
depends on f . However, in many cases the dependence on the state is such that
Kω only depends mildly on the energy content of ω [12].

State-independent QEIs in the form (2) have been established for free quan-
tum field theories in flat and curved spacetimes in a wide range of physical sit-
uations, including the free scalar, Dirac fermion, vector, and Rarita-Schwinger
field, see the reviews [13,14] and references therein, as well as in conformal field
theories (CFTs) in 1 + 1-dimensions [15]. Moreover, they have been established
also for smearings along a generic time-like worldline of an observer. In a more
general setting, it was shown that analogues of QEIs are fulfilled by observables
that arise from the operator product expansions of classically positive expres-
sions [16]. However, these observables do not necessarily have a direct physical
interpretation (such as the energy density of a system).

These inequalities are also related to the Averaged Null Energy Condition
(ANEC) [17], which is formally obtained from a QEI in the limit when the
averaging function f tends to 1 and the integration is over a null geodesic.
There is recent interest in the ANEC due to its connection to holography and
the quantum information carried by black hole horizons, see for example [18–20].

However, the analysis of QEIs in theories with self-interaction (apart from
the case of CFTs) is a long-standing problem due to the complicated structure
that local quantum fields have in the presence of non-trivial interactions. This is
unsatisfactory: the dependence of the energy density on self-interaction is clearly
of physical importance, and its lower bounds are related to the stability of space-
time, as explained above. A first result on QEIs in interacting massive theories
was obtained by the second author, Bostelmann and Fewster [21], who derived
a state-independent QEI for the massive Ising model. This model belongs to
the class of integrable quantum field theories on 1 + 1-dimensional Minkowski
spacetime, and describes scalar bosons whose two-particle scattering matrix is
given by S2 = −1. More generally, integrable models are characterised by a fac-
torizing scattering marix, where two-particle scattering processes determine the
behaviour of particles completely. A proof of QEIs in a larger class of scalar in-
tegrable models (including the Sinh–Gordon model) was obtained in [22], on the
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level of expectation values of the energy density in one-particle states. Presently,
the second author, Bostelmann and Mandrysch are also establishing QEIs in
integrable models with momentum-independent two-particle scattering matrix
in states of arbitrary particle number. Moreover, they are extending the anal-
ysis of QEIs at the one-particle level to integrable models with several particle
species and with bound states. This includes several relevant examples, such as
the Bullough-Dodd model, the O(N) nonlinear sigma model and the Federbush
model. At the same time, the analysis extends to integrable models describing
asymptotic fermions, first described in the non-perturbative algebraic quantum
field theory (AQFT) framework by [23].

In this paper, we establish a state-independent or absolute QEI for the mass-
less Sine–Gordon model in the finite regime of β2 < 4π. For this, we use meth-
ods from the perturbative AQFT framework reviewed in [24–26], in particular
employing the Bogoliubov formula to define interacting field operators. To our
knowledge, this is the first QEI that has been established in a self-interacting
model without the use of any special symmetry (such as conformal symmetry)
or the integrability of the model (like the Ising model as explained above). We
build on our previous paper [27], where we constructed the stress tensor Tµν

in the same model using an alternative approach based on the Gell–Mann-Low
formula. There, we showed that the renormalised expectation value of the stress
tensor is well-defined in the sense of distributions at each order in perturbation
theory after removal of the infrared (IR) and ultraviolet (UV) cutoffs. More-
over, we proved that the renormalised perturbative series converges both for the
Euclidean and the Lorentzian theory, for the latter in a large class of quasi-free
Hadamard states. We also showed that the stress tensor is conserved after adding
a quantum correction proportional to ℏ, yielding the expression

T̂µν ≡ Oµν − 1
2ηµνOρ

ρ + g

(
1 − β2

8π

)
ηµν(Vβ + V−β) (3)

with
Oµν ≡ ∂µϕ ∂νϕ . (4)

Previously, various aspects of the Sine–Gordon model had also been studied in
the pAQFT framework by Bahns, Fredenhagen, Pinamonti and Rejzner [28–30].

The main results of the present work are as follows: As a first step, we show
that the perturbative series for the renormalised interacting stress-energy tensor
given by the Bogoliubov formula converges in expectation in an arbitrary quasi-
free Hadamard state ω. This requires almost the same conditions as in [27,
Theorem 5], with only a slightly stronger assumption on the state-dependent
part W of the two-point function of ω, namely the requirement of conditional
positive semidefiniteness explained in Remark 1 below.

Theorem 1 (Renormalisation and convergence). Consider the massless
Lorentzian Sine–Gordon model in the finite regime β2 < 4π and a quasi-free
state ωΛ,ϵ in the vacuum sector whose two-point function has an IR cutoff Λ
and UV cutoff ϵ. We furthermore require that the state-dependent part W of the
two-point function of the state ω satisfies:

1. W (x, y) and its first and second derivatives grow at most polynomially,
2. W (x, y) is conditionally positive semidefinite.
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Then there exists a redefinition of time-ordered products T [Oµν(x) ⊗ Vα(y)] →
T [Oµν(x) ⊗ Vα(y)] + δT [Oµν(x) ⊗ Vα(y)] with δT a local term proportional to
δ2(x − y)T [Vα(y)], such that for any adiabatic cutoff function g ∈ S(R2) the
interacting modified stress tensor (3) defined by the Bogoliubov formula

Tint

[
T̂µν(z)

]
≡ T

[
eiSint

⊗

]⋆(−1)
⋆ T

[
T̂µν(z) ⊗ eiSint

⊗

]
(5)

has a finite expectation value in the state ω in the physical limit Λ, ϵ → 0:

lim
Λ,ϵ→0

ωΛ,ϵ
(

Tint

[
T̂µν(f)

])
< ∞ , (6)

where the limit is taken termwise and f ∈ S(R2). Moreover, the interacting
modified stress tensor is conserved: we have

lim
Λ,ϵ→0

ωΛ,ϵ
(

Tint

[
T̂µν(∂µf)

])
= 0 (7)

for all f ∈ S(R2) such that g is constant on the support of f .

Remark 1. The condition of conditional positive semidefiniteness of W is

W (f, f∗) =
∫∫

W (x, y)f(x)f∗(y) d2x d2y ≥ 0 (8)

for a complex test function f ∈ S(R2) with vanishing mean
∫

f(x) d2x = 0.
This condition is clearly related to the positive definiteness of the state ωΛ,ϵ for
derivatives of ϕ, since

(∂µϕ)(fµ) =
∫

∂µϕ(x)fµ(x) d2x = −
∫

ϕ(x)∂µfµ(x) d2x = −ϕ(∂µfµ) , (9)

the test function f(x) = ∂µfµ(x) has vanishing mean, and positivity of the state
in this case is

ωΛ,ϵ
(
(∂µϕ)(f∗

µ) ⋆ (∂νϕ)(fν)
)

= iH+(
∂µf∗

µ, ∂νfν

)
+ W

(
∂µf∗

µ, ∂νfν

)
> 0 (10)

for fµ ̸= 0, where H+ is the Hadamard parametrix. Since iH+ is already positive
definite for test functions with vanishing mean, the condition (8) is slightly
stronger than would be strictly required, but seems to be necessary for the
convergence of the perturbative series.

In our previous work [27], we instead required the discrete condition
n∑

i,j=1

[
W (xi, xj) − W (yi, xj) − W (xi, yj) + W (yi, yj)

]
≥ 0 (11)

for any configuration of points xi and yi and any n ∈ N. However, this can be
derived from (8) as follows: we take a sequence of test functions δN ∈ S(R2)
approximating the δ distribution as N → ∞, and f to be the sum

f(x) =
n∑

i=1

[
δ2

N (x − xi) − δ2
N (x − yi)

]
. (12)
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Taking the limit N → ∞ after integration, we obtain (11) from (8); such ap-
proximations and the existence of the limit for smooth W are well known.

For the example given in our previous work (a state that is thermal in a wide
range of energies) we have [27, Eq. (14)]

W (x, y) =
∫

eip(x−y)Θ
(∣∣p0∣∣ ∈ [E0, E1]

) πe−β|p0|

|p0|
(
1 − e−β|p0|

)
× [δ(p1 + p0) + δ(p1 − p0)] d2p

(2π)2 ,

(13)

and since this is positive semidefinite for all f ∈ S(R2) independently of their
mean, it fulfills the condition (8).

Secondly, we show that the expectation value of the perturbative series for the
renormalised interacting stress tensor in an arbitrary Hadamard state converges
also when the smearing is only along a one-dimensional time-like worldline, and
not in spacetime as in the previous theorem:

Theorem 2 (Renormalisation of the quantum energy density). We
assume the same conditions as in Theorem 1 and take a smearing function
f ∈ S(R) supported on a smooth time-like curve zµ(τ), żµ(τ)żµ(τ) = −1, τ ∈ R.
The quantum energy density

Eω(f) ≡ lim
Λ,ϵ→0

ωΛ,ϵ
(

Tint

[
T̂µν(F µν)

])
(14)

seen by an observer following the curve is finite, where

F µν(z) ≡ żµ(τ)żν(τ)f(τ) . (15)

Finally, we show that the interacting energy density, as seen by an observer
following a one-dimensional time-like worldline, satisfies a lower bound which
is independent of the quantum state. Namely, we establish a state-independent
QEI for the massless Sine–Gordon model:

Theorem 3 (Quantum energy inequality). We assume the same conditions
as in Theorem 2, but smear with the square of a test function f ∈ S(R). The
smeared quantum energy density (14) seen by an observer is then bounded from
below independently of the quantum state ω:

Eω(f2) ≥ −K(z, f, β, g) . (16)

Remark 2. As we will see in the proof, there are three different contributions to
the constant K on the right-hand side of the inequality (16), K = K0+KV +KH .
The first one is the contribution from the free theory, which can be calculated
exactly (171):

K0 = 1
24π

∫ [
6
[
f ′(τ)

]2 + f2(τ) [z̈1(τ)]2

1 + [ż1(τ)]2

]
dτ . (17)

It depends on the smearing function f and the trajectory zµ(τ), but obviously
not on β nor g. It consists of two parts: the first one that arises for a straight
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trajectory with zµ(τ) = δµ
0 τ , z̈µ = 0 and coincides with old results [31] in

two-dimensional Minkowski space, and the second one which arises from the dif-
ference of the actual trajectory and a straight one, and consequently depends on
the acceleration z̈µ.1 Moreover, K0 stays finite in the limit where the trajectory
becomes light-like ż1 → ±∞, at least if it is taken in such a way that z̈1/ż1

stays bounded. The second contribution KV is the one from the vertex opera-
tors V±β in the (quantum-corrected) stress tensor (3), while the third one KH

comes from derivatives of Hadamard parametrices that arise from the Oµν terms
in the stress tensor (3). Both of them clearly depend also on β and g, but while
KV is also finite in the light-like limit, the bounds that we derived to obtain KH

diverge in this limit, see for example (107) and the subsequent comments. The
QEI (16) therefore only holds in this form for time-like trajectories zµ(τ), and
we leave the derivation of a null QEI for the Sine–Gordon model to future work.

We do not believe our bound (16) to be optimal. Indeed, it is known [31] that
already the free-theory bound (17) for a straight trajectory overestimates the
optimal bound [32] by a factor 3/2. However, since we prove that the pertur-
bative series converges, for sufficiently small coupling g the contribution from
interactions (KV and KH) will be subdominant to the free-theory contribution
from K0. Unfortunately, through estimates such as (107), what is sufficiently
small depends also on the trajectory zµ(τ) (except if it is straight).

2. Proof of Theorem 1 (Renormalisation and convergence)

We again use the framework of perturbative algebraic quantum field theory, but
refer the reader to [24–26] for reviews and our previous work [27] for a short
introduction and all relevant formulas. However, instead of defining interacting
expectation values using the Gell-Mann–Low formula, we define interacting time-
ordered products Tint (and interacting operators) using the Bogoliubov formula,
and then take their expectation value.

Using that

T
[
eiSint

⊗

]⋆(−1)
= T

[
e−iSint

⊗

]
(18)

with the anti-time-ordered products T , the Bogoliubov formula defines interact-
ing time-ordered products by

Tint[O1(f1) · · · Ok(fk)] ≡ T
[
e−iSint

⊗

]
⋆ T

[
eiSint

⊗ ⊗ O1(f1) ⊗ · · · ⊗ Ok(fk)
]

. (19)

Here the operators Oi are classical polynomials of the basic field ϕ and its deriva-
tives or vertex operators Vα ≡ eiαϕ, smeared with test functions fi ∈ S(R2), and
Sint is the interaction with adiabatic cutoff. The time-ordered products T and
anti-time-ordered products T are constructed inductively, with the ones with
single entries equal to the Hadamard-normal-ordered products

T [O(x)] = NH [O(x)] = T [O(x)] . (20)

1 We do not claim that this second term is new, but we haven’t been able to find an explicit
expression for it in the literature.
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Outside the diagonal, the higher ones are defined by (anti-)causal factorisation:

T [O1(x1) ⊗ · · · ⊗ On(xn)]
= T [O1(x1) ⊗ · · · ⊗ Ok(xk)] ⋆ T [Ok+1(xk+1) ⊗ · · · ⊗ On(xn)] (21)

and

T [O1(x1) ⊗ · · · ⊗ On(xn)]
= T [Ok+1(xk+1) ⊗ · · · ⊗ On(xn)] ⋆ T [O1(x1) ⊗ · · · ⊗ Ok(xk)]

(22)

if none of the x1, . . . , xk lie in the past light cone of any of the xk+1, . . . , xn; the
extension to the total diagonal x1 = · · · = xn corresponds to renormalisation.
The interacting time-ordered products (19) with a single entry define interacting
operators in the quantum theory, and expanding the exponentials we obtain

Tint[O(x)] =
∞∑

n=0

n∑
k=0

(−1)kin

k!(n − k)!T
[
S⊗k

int
]

⋆ T
[
S

⊗(n−k)
int ⊗ O(x)

]
. (23)

For the Sine–Gordon model, the interaction is given by

Sint =
∫

g(x)[Vβ(x) + V−β(x)] d2x , (24)

where g ∈ S(R2) is the adiabatic cutoff and we consider the case where β2 < 4π.
We are interested in the interacting stress tensor, and from our previous work [27]
we know that the classical expression needs to be amended to obtain a conserved
tensor in the quantum theory. The corrected stress tensor is given by

T̂µν ≡ Oµν − 1
2ηµνOρ

ρ + g

(
1 − β2

8π

)
ηµν(Vβ + V−β) (25)

with the composite operator

Oµν ≡ ∂µϕ ∂νϕ , (26)

such that we need to determine Tint[Oµν ] and Tint[V±β ]. Moreover, we also need
Tint[∂µϕ] to prove the quantum energy inequality, so we first have to derive
explicit expressions for these three interacting operators:

Lemma 1. The interacting operators Tint[Vα(z)], Tint[∂µϕ(z)] and Tint[Oµν(z)]
are given by the formal power series (44), (40) and (43).

Proof. We recall from [27] that the two-point function G of the quasi-free state
ω is given by

G+(x, y) ≡ −iωΛ,ϵ(ϕ(x) ⋆ ϕ(y)) = H+(x, y) + i
2π

ln
(

Λ

µ

)
− iW (x, y) (27)

with the Hadamard parametrix

H+(x, y) ≡ i
4π

ln
[
µ2(ϵ + iu)(ϵ + iv)

]
(28)
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containing the singular part of the two-point function and the state-dependent
part W (x, y) which is a real smooth and symmetric bisolution of the massless
Klein–Gordon equation ∂2

xW (x, y) = ∂2
yW (x, y) = 0. We introduced the light

cone coordinates
u = u(x, y) ≡ (x0 − y0) − (x1 − y1) , v = v(x, y) ≡ (x0 − y0) + (x1 − y1) , (29)

Λ is an IR cutoff which we ultimately take to vanish, and we keep ϵ > 0 as a UV
cutoff. That is, the physical two-point function is obtained as the distributional
boundary value (in the limit ϵ → 0) from the function (27) which is analytic for
all ϵ > 0.

From the proof of [27, Lemma 2], we know that

T

 n⊗
j=1

Vαj
(xj)

 = exp

−i
∑

1≤i<j≤n

αiαjHF(xi, xj)

NG

 n∏
j=1

Vαj
(xj)



× exp

−1
2

n∑
i,j=1

αiαjW (xi, xj)

(
Λ

µ

) (
∑n

k=1
αk)2

4π

(30)

and

T

 n⊗
j=1

Vαj
(xj) ⊗ Oµν(z)

 = exp

−i
∑

1≤i<j≤n

αiαjHF(xi, xj)


×

[
n∑

i,j=1
αiαj∂µGF(z, xi)∂νGF(z, xj) NG

 n∏
j=1

Vαj
(xj)


− 2

n∑
i=1

αi∂(µGF(z, xi) NG

∂ν)ϕ(z)
n∏

j=1
Vαj

(xj)


+ NG

Oµν(z)
n∏

j=1
Vαj

(xj)

 + lim
z′→z

∂z
µ∂z′

ν W (z, z′) NG

 n∏
j=1

Vαj
(xj)

]

× exp

−1
2

n∑
i,j=1

αiαjW (xi, xj)

(
Λ

µ

) (
∑n

k=1
αk)2

4π

,

(31)

where NG denotes normal-ordering with respect to the full two-point func-
tion (27), HF is the Feynman parametrix

HF(x, y) ≡ Θ(x0 − y0)H+(x, y) + Θ(y0 − x0)H+(y, x)

= i
4π

ln
[
µ2(−uv + iϵ|u + v| + ϵ2)

] (32)

which is a fundamental solution of the massless Klein–Gordon equation:

∂2HF(x, y) = −4∂u∂vHF(x, y) = 2ϵ

π(u2 + ϵ2)δ(u + v)

→ 2δ(u)δ(v) = δ2(x − y) (ϵ → 0) ,

(33)



QEI in the Sine–Gordon model 9

and

GF(x, y) ≡ HF(x, y) + i
2π

ln
(

Λ

µ

)
− iW (x, y) (34)

is the time-ordered two-point function or Feynman propagator. Completely anal-
ogous to the proof of [27, Lemma 2], we also compute

T

 n⊗
j=1

Vαj
(xj) ⊗ ϕ(z)

 = exp

−i
∑

1≤i<j≤n

αiαjHF(xi, xj)


×

[
NG

ϕ(z)
n∏

j=1
Vαj

(xj)

 −
n∑

i=1
αiG

F(xi, z)NG

 n∏
j=1

Vαj
(xj)

]

× exp

−1
2

n∑
i,j=1

αiαjW (xi, xj)

(
Λ

µ

) (
∑n

k=1
αk)2

4π

,

(35)

as well as (using now the anti-causal factorisation (22))

T

 n⊗
j=1

Vαj
(xj)

 = exp

−i
∑

1≤i<j≤n

αiαjHD(xi, xj)

NG

 n∏
j=1

Vαj
(xj)



× exp

−1
2

n∑
i,j=1

αiαjW (xi, xj)

(
Λ

µ

) (
∑n

k=1
αk)2

4π

,

(36)

where

HD(x, y) ≡ Θ(x0 − y0)H+(y, x) + Θ(y0 − x0)H+(x, y) (37)

is the anti-time-ordered or Dyson parametrix. As in [27, Lemma 2], these expres-
sions are smooth functions of the xi if ϵ > 0, but for ϵ = 0 need renormalisation
(which we will do later).

To determine the interacting operators that we need, we use the product
formula [27, Eq. (126)]

NG

[
ei(J,ϕ)

]
⋆ NG

[
ei(K,ϕ)

]
= exp

[
−i(J, G+ ∗ K)

]
NG

[
ei(J+K,ϕ)

]
, (38)

where (J, ϕ) ≡
∫

J(x)ϕ(x) d2x and (J, G+ ∗ K) ≡
∫∫

J(x)G+(x, y)K(y) d2x d2y.
Taking functional derivatives thereof with respect to J or K and choosing J and
K appropriately, we obtain the product for terms involving powers of ϕ and its
derivatives, while for J or K proportional to sums of δ distributions we obtain
the product for vertex operators. From the Bogoliubov formula (23) and the
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Sine–Gordon interaction (24), we first compute

Tint[O(z)] =
∞∑

n=0

n∑
k=0

(−1)kin

k!(n − k)!

∫
· · ·

∫ ∑
σj=±1

T

[
k⊗

i=1
Vσiβ(xi)

]

⋆ T

 n⊗
j=k+1

Vσjβ(xj) ⊗ O(z)

 n∏
j=1

g(xj) d2xj

=
∞∑

n=0

n∑
k=0

k∑
ℓ=0

n−k∑
m=0

(−1)kin

ℓ!(k − ℓ)!m!(n − k − m)!

∫
· · ·

∫

× T

 ℓ⊗
i=1

Vβ(xi)
k−ℓ⊗
j=1

V−β(yj)

 ⋆ T

 ℓ+m⊗
i=ℓ+1

Vβ(xi)
n−ℓ−m⊗

j=k−ℓ+1
V−β(yj) ⊗ O(z)


×

ℓ+m∏
i=1

g(xi) d2xi

n−ℓ−m∏
j=1

g(yj) d2yj ,

(39)

where we used that the (anti-)time-ordered products are symmetric in their
arguments, and that there are k!/[ℓ!(k − ℓ)!] ways to choose ℓ vertex operators
Vβ with positive sign from a total of k ones V±β with either sign; we also renamed
the insertion points of the V−β operators to yj .

Using then the above results for the (anti-)time-ordered products (36) and
(35) and the product formula (38) as well as the decomposition of the two-point
function (27), a long but straightforward computation results in

Tint[∂µϕ(z)] = −
∞∑

n=0

n∑
k=0

k∑
ℓ=0

n−k∑
m=0

(−1)kin

ℓ!(k − ℓ)!m!(n − k − m)!

∫
· · ·

∫
Ek,ℓ,n,m(x⃗; y⃗)

×

[
β∂z

µGk,ℓ,n,m(x⃗; y⃗; z) NG

ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


− NG

∂µϕ(z)
ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)

]

×
(

Λ

µ

) β2(2(ℓ+m)−n)2
4π

ℓ+m∏
i=1

g(xi) d2xi

n−ℓ−m∏
j=1

g(yj) d2yj , (40)

where we defined

Gk,ℓ,n,m(x⃗; y⃗; z) ≡
ℓ∑

i=1
H+(xi, z) +

ℓ+m∑
i=ℓ+1

HF(xi, z) −
k−ℓ∑
j=1

H+(yj , z)

−
n−ℓ−m∑

j=k−ℓ+1
HF(yj , z) − i

ℓ+m∑
i=1

W (xi, z) + i
n−ℓ−m∑

j=1
W (yj , z)

(41)
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and

Ek,ℓ,n,m(x⃗; y⃗) ≡ exp
[

− iβ2
∑

1≤i<j≤ℓ

HD(xi, xj) + iβ2
ℓ∑

i=1

k−ℓ∑
j=1

HD(xi, yj)

− iβ2
∑

1≤i<j≤k−ℓ

HD(yi, yj) − iβ2
∑

ℓ+1≤i<j≤ℓ+m

HF(xi, xj)

+ iβ2
ℓ+m∑

i=ℓ+1

n−ℓ−m∑
j=k−ℓ+1

HF(xi, yj) − iβ2
∑

k−ℓ+1≤i<j≤n−ℓ−m

HF(yi, yj)

− iβ2
ℓ∑

i=1

ℓ+m∑
j=ℓ+1

H+(xi, xj) + iβ2
ℓ∑

i=1

n−ℓ−m∑
j=k−ℓ+1

H+(xi, yj)

+ iβ2
k−ℓ∑
i=1

ℓ+m∑
j=ℓ+1

H+(yi, xj) − iβ2
k−ℓ∑
i=1

n−ℓ−m∑
j=k−ℓ+1

H+(yi, yj)
]

× exp

−β2

2

ℓ+m∑
i,j=1

W (xi, xj) + β2
ℓ+m∑
i=1

n−ℓ−m∑
j=1

W (xi, yj) − β2

2

n−ℓ−m∑
i,j=1

W (yi, yj)

 .

(42)

Analogously, we obtain

Tint[Oµν(z)] =
∞∑

n=0

n∑
k=0

k∑
ℓ=0

n−k∑
m=0

(−1)kin

ℓ!(k − ℓ)!m!(n − k − m)!

∫
· · ·

∫
Ek,ℓ,n,m(x⃗; y⃗)

×

[
β2∂z

µGk,ℓ,n,m(x⃗; y⃗; z)∂z
νGk,ℓ,n,m(x⃗; y⃗; z) NG

ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


− 2β∂z

(µGk,ℓ,n,m(x⃗; y⃗; z) NG

∂ν)ϕ(z)
ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


+ NG

Oµν(z)
ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


+ lim

z′→z
∂z

µ∂z′

ν W (z, z′) NG

ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)

]

×
(

Λ

µ

) β2(2(ℓ+m)−n)2
4π

ℓ+m∏
i=1

g(xi) d2xi

n−ℓ−m∏
j=1

g(yj) d2yj (43)
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and

Tint[Vα(z)] =
∞∑

n=0

n∑
k=0

k∑
ℓ=0

n−k∑
m=0

(−1)kin

ℓ!(k − ℓ)!m!(n − k − m)!

∫
· · ·

∫
Ek,ℓ,n,m(x⃗; y⃗)

× exp
[
−iαβ Gk,ℓ,n,m(x⃗; y⃗; z) − α2

2 W (z, z)
]

× NG

ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)Vα(z)


×

(
Λ

µ

) [(2(ℓ+m)−n)β+α]2
4π

ℓ+m∏
i=1

g(xi) d2xi

n−ℓ−m∏
j=1

g(yj) d2yj . (44)

⊓⊔

The proofs of Theorems 1 and 2 then proceeds analogously to the proof
of [27, Thms. 4–6] in our previous work, where we showed renormalisability
and convergence of the Gell-Mann–Low series for the interacting expectation
value of the stress tensor as well as its conservation. However, since now we are
considering the Bogoliubov definition of the interacting stress tensor, as well as
smearing functions that are supported on a smooth time-like curve (instead of
space-time smearings), there are some small differences. To shorten the proof, we
will only explain the differences and refer the reader for all other details to [27].

As in [27], we see that taking the expectation value in the quasi-free state
ωΛ,ϵ with two-point function G+ and taking the limit Λ → 0, only neutral con-
figurations contribute at each order in perturbation theory. For the (smeared)
expectation value of the interacting modified stress tensor T̂µν , using the re-
sults (43) and (44), we thus obtain the series

lim
Λ→0

ωΛ,ϵ
(

Tint

[
T̂µν(f)

])
=

∞∑
n=0

n∑
k=0

k∑
ℓ=0

n−k∑
m=0

(−1)kin

ℓ!(k − ℓ)!m!(n − k − m)!

∫
· · ·

∫

× Ek,ℓ,n,m(x⃗; y⃗)Θk,ℓ,n,m
µν (x⃗; y⃗; z)f(z) d2z

ℓ+m∏
i=1

g(xi) d2xi

n−ℓ−m∏
j=1

g(yj) d2yj

(45)
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with

Θk,ℓ,n,m
µν (x⃗; y⃗; z) ≡ δ2(ℓ+m),n

[
β2∂z

µGk,ℓ,n,m(x⃗; y⃗; z)∂z
νGk,ℓ,n,m(x⃗; y⃗; z)

− β2

2 ηµν∂ρ
z Gk,ℓ,n,m(x⃗; y⃗; z)∂z

ρGk,ℓ,n,m(x⃗; y⃗; z)

+ lim
z′→z

(
∂z

µ∂z′

ν W (z, z′) − 1
2ηµν∂ρ

z ∂z′

ρ W (z, z′)
)]

+
(

1 − β2

8π

)
ηµνg(z)δ2(ℓ+m),n−1 exp

[
−iβ2Gk,ℓ,n,m(x⃗; y⃗; z) − β2

2 W (z, z)
]

+
(

1 − β2

8π

)
ηµνg(z)δ2(ℓ+m),n+1 exp

[
iβ2Gk,ℓ,n,m(x⃗; y⃗; z) − β2

2 W (z, z)
]

.

(46)

Inserting the Wightman, Feynman and Dyson Hadamard parametrices (28), (32)
and (37) into Ek,ℓ,n,m (42), we obtain a product of terms of the form

[
µ2(−u(xi, xj)v(xi, xj) + iϵ)

]± β2
4π (47)

as well as such terms with xi or xj replaced by yi or yj , and terms with different iϵ
prescriptions: −iϵ instead of +iϵ for the Dyson parametrices, and +iϵ sgn(x0

i −x0
j )

for the Wightman parametrices. For a negative exponent, these are singular as
ϵ → 0, but the singularity is absolutely integrable since we are in the finite regime
β2 < 4π. We can thus take their absolute value and ignore the iϵ prescription,
and then these terms are bounded in the same way as in the proof of [27, Thm. 5].
The same applies to the exponentials containing parametrices in Θk,ℓ,n,m

µν (46)
which are contained in Gk,ℓ,n,m (41), and which come from the vertex operators
in the stress tensor.

We thus only need to potentially renormalise the products of derivatives of
Gk,ℓ,n,m (41) in the first contribution to Θk,ℓ,n,m

µν (46). Expanding those, we have
three different types of terms: products of two W which are smooth, products
of W and one parametrix, and products of two parametrices. For the products
of W and one parametrix, we integrate by parts to obtain∫

∂µW (x, z)∂νH(y, z)f(z) d2z = −
∫

H(y, z)∂ν [∂µW (x, z)f(z)] d2z , (48)

where the points x and y may be the same, and where the parametrix H is either
a Wightman one H+ or a Feynman one HF. Since W and f are smooth and the
parametrix is only logarithmically divergent, the singularity is then integrable
and we can bound this integral in the same way as in the proof of [27, Thm. 5].
We now consider the terms with two parametrices. If they are supported at
different points, i.e., for the terms of the form ∂µH(x, z)∂νH(y, z) with x ̸= y,
no renormalisation is needed and we can bound them in the same way as in
the proof of [27, Thm. 5]. For this, we use that the mixed derivatives can be



14 M. B. Fröb, D. Cadamuro

rewritten in the form∫
∂z

(uHF(x, z)∂z
v)H

F(y, z)f(z) d2z = 1
8HF(x, y)[f(x) + f(y)]

+ 1
2

∫
HF(x, z)HF(y, z)∂u∂vf(z) d2z ,

(49)

which is [27, Eq. (187)], and which follows straightforwardly from an integration
by parts and the fact that the Feynman parametrix HF is a fundamental solution
of the massless Klein–Gordon equation (33). Since the Wightman parametrix H+

is a solution, for their products we have instead∫
∂z

(uH+(x, z)∂z
v)H

+(y, z)f(z) d2z = 1
2

∫
H+(x, z)H+(y, z)∂u∂vf(z) d2z ,

(50)
and for the mixed products we obtain∫

∂z
(uH+(x, z)∂z

v)H
F(y, z)f(z) d2z = 1

8H+(x, y)f(y)

+ 1
2

∫
H+(x, z)HF(y, z)∂u∂vf(z) d2z .

(51)

On the other hand, for the same derivatives it is shown in [27, Eqs. (195)–(198)]
that

∂z
uHF(x, z)∂z

uHF(y, z) = 1
32π2

∂2

∂u(z)2 ln
[
µ2u(z, a)2]

, (52)

where a is some point such that min(u(x), u(y)) ≤ u(a) ≤ max(u(x), u(y)), and
the analogous result for v derivatives, and the same computation establishes
this result also for the Wightman and mixed parametrices. All these can now be
bounded in the same way as in the proof of [27, Thm. 5].

On the other hand, the terms with products of two parametrices at the same
point need renormalisation. We know that [27, Eq. (150)]

∂µHF(x, y)∂νHF(x, y) =
[
∂µHF(x, y)∂νHF(x, y)

]ren

− i
4π

ηµν ln(2µϵ) δ2(x − y) + O(ϵ) ,
(53)

with δ2(x − y) = 2δ(u)δ(v) and[
∂uHF(x, y)∂uHF(x, y)

]ren = − i
4π

∂2
uHF(x, y) − i

16π
δ2(x − y) , (54a)[

∂vHF(x, y)∂vHF(x, y)
]ren = − i

4π
∂2

vHF(x, y) − i
16π

δ2(x − y) , (54b)[
∂uHF(x, y)∂vHF(x, y)

]ren = 1
2∂u∂v

[
HF(x, y)

]2
. (54c)

Moreover, in the proof of [27, Thm. 6] it is shown that there exists a redefinition
of time-ordered products [27, Eqs. (220)–(224)] such that the last term is removed
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from
[
∂uHF(x, y)∂uHF(x, y)

]ren and
[
∂vHF(x, y)∂vHF(x, y)

]ren. It is also shown
that there exists another redefinition of time-ordered products [27, Eqs. (152)–
(155)] such that the divergent term ∼ ln ϵ is removed; however, this is actually
not necessary for the stress tensor, since it anyway cancels out in Θk,ℓ,n,m

µν (46).
We now only need to determine the corresponding formulas for the product of
two Wightman parametrices H+, since the product of a Feynman parametrix
and a Wightman one at the same point never appears. Namely, using the explicit
form of the parametrix (28), we compute

∂uH+(x, y)∂uH+(x, y) = − 1
16π2

1
(u − iϵ)2 = 1

16π2 ∂2
u ln(u − iϵ)

= − i
4π

∂2
uH+(x, y)

(55)

and the analogous equation for ∂vH+(x, y)∂vH+(x, y), as well as

∂uH+(x, y)∂vH+(x, y) = − 1
16π2

1
(u − iϵ)(v − iϵ) = 1

2∂u∂v

[
H+(x, y)

]2
(56)

for the mixed derivatives. For these terms we thus do not need any redefinition of
time-ordered products, and can also bound them in the same way as the product
of Feynman parametrices, as in the proof of [27, Thm. 5].

It then follows as in the proof of [27, Thm. 5] that we have the bounds∣∣∣∣∣∣
∫

· · ·
∫

Ek,ℓ,n,m(x⃗; y⃗)Θk,ℓ,n,m
µν (x⃗; y⃗; z)f(z) d2z

ℓ+m∏
i=1

g(xi) d2xi

n−ℓ−m∏
j=1

g(yj) d2yj

∣∣∣∣∣∣
≤ δ2(ℓ+m),nCn2Kn[(ℓ + m)!]1+ β2

4π + δ2(ℓ+m),nC ′(K ′)n[(ℓ + m)!]1+ β2
4π

+
(
δ2(ℓ+m),n−1 + δ2(ℓ+m),n+1

)
C ′′(K ′′)n+1[(ℓ + m + 1)!]1+ β2

4π ,
(57)

with the constants C, C ′, C ′′, K, K ′ and K ′′ depending on f , g, β and W , and
using that

(ℓ + m + 1)1+ β2
4π ≤ (ℓ + m + 1)2 (58)

for β2 < 4π, the expectation value of the interacting stress tensor (45) is bounded
by

∣∣∣∣ lim
Λ,ϵ→0

ωΛ,ϵ
(

Tint

[
T̂µν(f)

])∣∣∣∣ ≤ Ĉ

∞∑
n=0

K̂n
n∑

k=0

k∑
ℓ=0

n−k∑
m=0

[(ℓ + m)!]1+ β2
4π

ℓ!(k − ℓ)!m!(n − k − m)!

×
[
δ2(ℓ+m),n(1 + n2) +

(
δ2(ℓ+m),n−1 + δ2(ℓ+m),n+1

)
(ℓ + m + 1)2

]
, (59)

where Ĉ = max(C, C ′, C ′′K ′′) and K̂ = max(K, K ′, K ′′). It remains to estimate
the sums, and we start with the first term where only terms with 2(ℓ + m) = n
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contribute. Changing n → 2n, we thus have to bound

Ĉ

∞∑
n=0

[1 + (2n)2]K̂2n
2n∑

k=0

k∑
ℓ=0

2n−k∑
m=0

[(ℓ + m)!]1+ β2
4π

ℓ!(k − ℓ)!m!(2n − k − m)!δ(ℓ+m),n

≤ 2Ĉ

∞∑
n=0

(n + 1)2K̂2n(n!)1+ β2
4π

2n∑
k=0

min(k,n)∑
ℓ=max(0,k−n)

1
ℓ!(k − ℓ)!(n − ℓ)!(n − k + ℓ)! .

(60)
We split the sum over k in two and shift k → k + n in the second half, such that

2n∑
k=0

min(k,n)∑
ℓ=max(0,k−n)

1
ℓ!(k − ℓ)!(n − ℓ)!(n − k + ℓ)!

=
n∑

k=0

k∑
ℓ=0

1
ℓ!(k − ℓ)!(n − ℓ)!(n − k + ℓ)! +

n∑
k=1

n∑
ℓ=k

1
ℓ!(k + n − ℓ)!(n − ℓ)!(ℓ − k)!

=
n∑

ℓ=0

n∑
k=ℓ

1
ℓ!(k − ℓ)!(n − ℓ)!(n − k + ℓ)! +

n∑
ℓ=1

ℓ∑
k=1

1
ℓ!(k + n − ℓ)!(n − ℓ)!(ℓ − k)!

=
n∑

ℓ=0

n∑
k=ℓ

1
ℓ!(n − k)!(n − ℓ)!k! +

n∑
ℓ=1

ℓ−1∑
k=0

1
ℓ!(n − k)!(n − ℓ)!k! , (61)

where we switched the order of summation of both sums in the second equality,
and replaced k → n − k + ℓ in the first sum and k → ℓ − k in the second sum
in the third equality. We can then extend the summation in the second sum to
include ℓ = 0, and both sums combine to give

2n∑
k=0

min(k,n)∑
ℓ=max(0,k−n)

1
ℓ!(k − ℓ)!(n − ℓ)!(n − k + ℓ)!

=
[

n∑
ℓ=0

1
ℓ!(n − ℓ)!

]
n∑

k=0

1
(n − k)!k! = 22n

(n!)2 .

(62)

It follows that (60) is bounded by

4Ĉ

∞∑
n=0

(n + 1)2(2K̂)2n

(n!)1− β2
4π

< ∞ , (63)

since we are in the finite regime β2 < 4π.
For the second term in the sum (59) where only terms with 2(ℓ + m) = n − 1

contribute, we change n → 2n + 1 and have to bound

Ĉ

∞∑
n=0

K̂2n+1
2n+1∑
k=0

k∑
ℓ=0

2n+1−k∑
m=0

[(ℓ + m)!]1+ β2
4π

ℓ!(k − ℓ)!m!(2n + 1 − k − m)! (ℓ + m + 1)2δ(ℓ+m),n

= ĈK̂

∞∑
n=0

(n + 1)2K̂2n
2n+1∑
k=0

min(k,n)∑
ℓ=max(0,k−n−1)

(n!)1+ β2
4π

ℓ!(k − ℓ)!(n − ℓ)!(n + 1 − k + ℓ)! .

(64)
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Similarly to before, we split the sum over k, shift k in the second sum and switch
the order of summation to obtain

2n+1∑
k=0

min(k,n)∑
ℓ=max(0,k−n−1)

1
ℓ!(k − ℓ)!(n − ℓ)!(n + 1 − k + ℓ)!

=
n∑

ℓ=0

n∑
k=ℓ

1
ℓ!(k − ℓ)!(n − ℓ)!(n + 1 − k + ℓ)!

+
n∑

ℓ=0

ℓ∑
k=0

1
ℓ!(k + n + 1 − ℓ)!(n − ℓ)!(ℓ − k)! .

(65)

We now replace k → n + 1 − k + ℓ in the first sum and k → ℓ − k in the second
sum, and obtain

2n+1∑
k=0

min(k,n)∑
ℓ=max(0,k−n−1)

1
ℓ!(k − ℓ)!(n − ℓ)!(n + 1 − k + ℓ)!

=
[

n∑
ℓ=0

1
ℓ!(n − ℓ)!

]
n+1∑
k=0

1
(n + 1 − k)!k! = 22n+1

n!(n + 1)! ,

(66)

such that (64) is bounded by

2ĈK̂

∞∑
n=0

(n + 1)(2K̂)2n

(n!)1− β2
4π

< ∞ . (67)

The last term in the sum (59) is bounded analogously, such that the expectation
value of the interacting stress tensor (59) has a finite bound; in particular, the
perturbative sum from the Bogoliubov formula (23) is absolutely convergent in
this case.

Conservation of the interacting (modified) stress tensor then follows exactly
as in the proof of [27, Thm. 6], and we omit the details. ⊓⊔

3. Proof of Theorem 2 (Renormalisation of the quantum energy
density)

While Theorem 1 shows that the expectation value of the stress tensor is finite
when smeared with a test function of space-time, for the QEI we need to smear
the energy density with a test function supported on a time-like curve. We thus
need to derive suitable bounds to show that also this smearing is finite.

We consider a smooth time-like curve zµ(τ) with τ ∈ R and define the as-
sociated relativistic velocity vµ(τ) ≡ żµ(τ), which we assume to be normalised:
vµvµ = −1. We also define the associated space-like vector wµ(τ) ≡ −ϵµνvν(τ),
which is also normalised: wµwµ = 1. Using that ϵµνϵρσ = −2ηµ[ρησ]ν , it follows
that the Minkowski metric can be written as

ηµν = −vµvν + wµwν , ηµν = −vµvν + wµwν . (68)
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The energy density as seen by an observer following this curve is then given by
the contraction of the stress tensor with vµvν , and the (smeared) expectation
value of the quantum energy density is (14)

Eω(f) ≡ lim
Λ,ϵ→0

ωΛ,ϵ
(

Tint

[
T̂µν(vµvνf)

])
(69)

with f ∈ S(R), where we integrate over the one-dimensional submanifold z(τ).
Analogously to the previous result (45) for a space-time smearing, using the

results (43) and (44) we obtain the series

Eω(f) =
∞∑

n=0

n∑
k=0

k∑
ℓ=0

n−k∑
m=0

(−1)kin

ℓ!(k − ℓ)!m!(n − k − m)!

∫
· · ·

∫
Ek,ℓ,n,m(x⃗; y⃗)

× Θk,ℓ,n,m(x⃗; y⃗; τ)f(τ) dτ

ℓ+m∏
i=1

g(xi) d2xi

n−ℓ−m∏
j=1

g(yj) d2yj

(70)

for the (smeared) expectation value of the interacting energy density, where

Θk,ℓ,n,m(x⃗; y⃗; τ) ≡ vµ(τ)vν(τ)Θk,ℓ,n,m
µν (x⃗; y⃗; z(τ))

= 1
2(vµvν + wµwν)δ2(ℓ+m),n

[
β2∂z

µGk,ℓ,n,m(x⃗; y⃗; z)∂z
νGk,ℓ,n,m(x⃗; y⃗; z)

+ lim
z′→z

∂z
µ∂z′

ν W (z, z′)
]

−
(

1 − β2

8π

)
g(z)δ2(ℓ+m),n−1 exp

[
−iβ2Gk,ℓ,n,m(x⃗; y⃗; z) − β2

2 W (z, z)
]

−
(

1 − β2

8π

)
g(z)δ2(ℓ+m),n+1 exp

[
iβ2Gk,ℓ,n,m(x⃗; y⃗; z) − β2

2 W (z, z)
]

,

(71)

and we evaluate it on the observer’s worldline z = z(τ). To simplify the expres-
sion for Θk,ℓ,n,m, we have used the expression for the inverse metric in terms of
vµ and wµ (68), from which it follows that for any Aµ and Bµ

vµvν

(
AµBν − 1

2ηµνAρBρ

)
= 1

2(vµvν + wµwν)AµBν . (72)

To show that Eω(f) is renormalisable and the series (70) convergent, we need to
show bounds on the smearing in τ which are of the same form as for a space-time
smearing. Afterwards, we can proceed exactly as in the proofs of Theorem 1 (the
previous section) and [27, Thms. 4 and 5], and we omit the details.

For the required bounds, we first consider the last two terms in (71), which
contain exponentials of the parametrix. As in the previous section, inserting
the various parametrices into Ek,ℓ,n,m and Gk,ℓ,n,m, we obtain after taking the
absolute value a product of terms of the form

∣∣µ2u(xi, xj)v(xi, xj)
∣∣± β2

4π (73)
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as well as such terms with xi or xj replaced by yi or yj or z. As in the
proof of [27, Thm. 5], we can write them using the Cauchy determinant for-
mula as a determinant, which can then be estimated by the absolute value of
the sum of individual terms. For this, we need to combine the exponentials
exp

[
±iβ2Gk,ℓ,n,m(x⃗; y⃗; z) − β2/2W (z, z)

]
with Ek,ℓ,n,m(x⃗; y⃗) analogously to [27,

Eq. (202)], renaming z to xℓ+m+1 for the second-to-last term in (71) or yn−ℓ−m+1
for the last term in (71). Since both cases are bounded in the same way, we only
show the first explicitly. We thus need to bound

∫
· · ·

∫ ∑
π

 k∏
j=1

1
µ

∣∣u(xj , yπ(j))
∣∣
 1

µ
∣∣u(z(τ), yπ(k+1))

∣∣


β2
4π

×

∑
π

 k∏
j=1

1
µ

∣∣v(xj , yπ(j))
∣∣
 1

µ
∣∣v(z(τ), yπ(k+1))

∣∣


β2
4π

× |g(z(τ))||f(τ)| dτ

k∏
i=1

|g(xi)| du(xi) dv(xi)
k+1∏
i=1

|g(yi)| du(yi) dv(yi) ,

(74)

where k = ℓ+m and the sums run over all permutations π of {1, . . . , k +1}. The
only difference to [27, Eq. (163)] is then that instead of a space-time integral
over xk+1, we only have a one-dimensional integral over τ . We thus proceed
exactly as in the proof of [27, Thm. 5], producing IR convergence factors

[
1 +

µ2u(x)2]−2[
1+µ2v(x)2]−2 by bounding their inverse together with the adiabatic

cutoff functions g(x), using Hölder’s inequality to bound the resulting integrals
which factorise in u and v, and extracting the sum over permutations (which
gives an additional factor of [(k + 1)!]2/ρ with ρ = 8π/(4π + β2)). The only new
bound that we need to prove is a bound on∫∫∫ [

µ2|u(z(τ), yk+1)v(z(τ), yk+1)|
]−ρ β2

4π |f(τ)| dτ

× du(yk+1)
[1 + µ2u(yk+1)2]ρ

dv(yk+1)
[1 + µ2v(yk+1)2]ρ ,

(75)

since the integral over xk+1 = z(τ) is now only one-dimensional. We shift
u(yk+1) → u(yk+1)+u(z(τ)), v(yk+1) → v(yk+1)+v(z(τ)) and perform these in-
tegrals first. We split the integral over u(yk+1) into two parts: If µ|u(yk+1)| ≤ 1,
we estimate the factor [1 + µ2[u(yk+1) + u(z(τ))]2]−ρ by 1 and obtain∫

µ|u(yk+1)|≤1

[
µ|u(yk+1)|

]−ρ β2
4π du(yk+1)

[1 + µ2[u(yk+1) + u(z(τ))]2]ρ ≤ 8π

4π − ρβ2 µ−1 ,

(76)
while for µ|u(yk+1)| > 1 we estimate∫

µ|u(yk+1)|>1

[
µ|u(yk+1)|

]−ρ β2
4π du(yk+1)

[1 + µ2[u(yk+1) + u(z(τ))]2]ρ

≤
∫ du(yk+1)

[1 + µ2[u(yk+1) + u(z(τ))]2]ρ =
√

π

µ

Γ
(
ρ − 1

2
)

Γ (ρ) .

(77)
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The integral over v(yk+1) is bounded in the same way, and finally the integral
over τ gives ∥f∥1. It follows that for the contribution of the last two terms in (71)
to the expectation value of the energy density we have a bound of the same form
as for a space-time smearing, namely∫

· · ·
∫

|Ek,ℓ,n,m(x⃗; y⃗)|
(

1 − β2

8π

)
δ2(ℓ+m),n+1|g(z)||f(τ)|

×
∣∣∣∣exp

[
iβ2Gk,ℓ,n,m(x⃗; y⃗; z) − β2

2 W (z, z)
]∣∣∣∣ dτ

ℓ+m∏
i=1

|g(xi)| d2xi

n−ℓ−m∏
j=1

|g(yj)| d2yj

≤ δ2(ℓ+m),n−1CKn+1[(ℓ + m + 1)!]1+ β2
4π (78)

with constants C and K depending on f , g, β and z(τ); compare (57) for the
space-time smearing. We note that due to our condition (11)

n∑
i,j=1

[
W (xi, xj) − W (xi, yj) − W (yi, xj) + W (yi, yj)

]
≥ 0 (79)

for all n ∈ N, the W dependence in the exponential in Ek,ℓ,n,m(x⃗; y⃗) (42), com-
bined with W (z, z), is simply estimated by 1, and thus the constants C and K
do not depend on W .

To bound the first term in (71), we first consider the second derivative of the
state-dependent part W . A straightforward bound is∣∣∣∣∣

∫ 1
2(vµvν + wµwν) lim

z′→z
∂z

µ∂z′

ν W (z, z′)
∣∣∣∣
z=z(τ)

f(τ) dτ

∣∣∣∣∣
≤ sup

µ∈{0,1}
∥sup(vµ)∥2

∞ sup
µ,ν∈{0,1}

∥∥∥∂z
µ∂z′

ν W (z, z′)
∥∥∥

∞
∥f∥1 ,

(80)

where we used that w1 = v0, w0 = v1. For the terms contained in Gk,ℓ,n,m (41),
we again have three different types of terms: products of two W , products of W
and one parametrix, and products of two parametrices. For products of two W ,
we again have a straightforward bound∣∣∣∣∣

∫ 1
2(vµvν + wµwν)∂z

µW (x, z)∂z
νW (y, z)

∣∣∣∣
z=z(τ)

f(τ) dτ

∣∣∣∣∣
≤ sup

µ∈{0,1}
∥sup(vµ)∥2

∞ sup
µ∈{0,1}

∥∥∂z
µW (x, z)

∥∥2
∞∥f∥1 ,

(81)

where x and y can be equal or distinct. For the products of W and one parametrix,
we compute instead∫ 1

2(vµvν + wµwν)∂z
µW (x, z)∂z

νH(y, z)
∣∣∣∣
z=z(τ)

f(τ) dτ

=
∫ [

(v0 − v1)2∂u(z)W (x, z)∂u(z)H(y, z)

+ (v0 + v1)2∂v(z)W (x, z)∂v(z)H(y, z)
]

z=z(τ)
f(τ) dτ ,

(82)
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using that

vu = v0 − v1 , vv = v0 + v1 , wu = −vu , wv = vv . (83)

In particular, the mixed terms where one derivative is with respect to u and
one with respect to v have dropped out. We now need to change the derivatives
acting on the parametrix into the τ derivative, for which we first compute

∂τ u(z(τ)) = ∂τ

[
z0(τ) − z1(τ)

]
= v0 − v1 =

√
1 + (v1)2 − v1 > 0 , (84a)

∂τ v(z(τ)) = ∂τ

[
z0(τ) + z1(τ)

]
= v0 + v1 =

√
1 + (v1)2 + v1 > 0 , (84b)

using that z(τ) is a future-directed time-like curve. For the Wightman parametrix
(28), it follows that

∂u(z)H
+(y, z)

∣∣∣
z=z(τ)

= − i
4π

1
u(y, z) − iϵ

∣∣∣∣
z=z(τ)

= i
4π

1
v0 − v1 ∂τ ln[µ(ϵ + iu(y, z(τ)))]

(85)

and the analogous equation with v0 + v1 for the v(z) derivative, while for the
Feynman parametrix (32) we obtain

∂u(z)H
F(y, z)

∣∣∣
z=z(τ)

= − i
4π

[
Θ(u(y, z) + v(y, z))

u(y, z) − iϵ + Θ(−u(y, z) − v(y, z))
u(y, z) + iϵ

]
z=z(τ)

= i
4π

1
v0 − v1 ∂τ

[
Θ(u(y, z(τ)) + v(y, z(τ))) ln[µ(ϵ + iu(y, z(τ)))]

+ Θ(−u(y, z(τ)) − v(y, z(τ))) ln[µ(ϵ − iu(y, z(τ)))]
]

− i
4π

v0

v0 − v1 δ(y0 − z0(τ))iπ sgn[y1 − z1(τ)] , (86)

and the analogous equation with u replaced by v, v0 − v1 by v0 + v1 and the
sgn function replaced by its negative. Integrating the τ derivative by parts, and
changing coordinates to either u(z(τ)) or v(z(τ)) according to the argument of
the logarithm, for the Wightman parametrix we thus obtain∫ 1

2(vµvν + wµwν)∂z
µW (x, z)∂z

νH+(y, z)
∣∣∣∣
z=z(τ)

f(τ) dτ

= − i
4π

∫ [
f(τ)∂τ

[
∂u(z)W (x, z)

]
z=z(τ)

+ f(τ)∂τ ln(v0 − v1)
[
∂u(z)W (x, z)

]
z=z(τ)

+ ∂τ f(τ)
[
∂u(z)W (x, z)

]
z=z(τ)

]
ln[µ(ϵ + iu(y, z(τ)))] du(z(τ))

− i
4π

∫ [
f(τ)∂τ

[
∂v(z)W (x, z)

]
z=z(τ)

+ f(τ)∂τ ln(v0 + v1)
[
∂v(z)W (x, z)

]
z=z(τ)

+ ∂τ f(τ)
[
∂v(z)W (x, z)

]
z=z(τ)

]
ln[µ(ϵ + iv(y, z(τ)))] dv(z(τ)) ,

(87)



22 M. B. Fröb, D. Cadamuro

where now τ (and thus also zµ(τ)) is a function of u(z(τ)) in the first integral
and of v(z(τ)) in the second integral. This identification proceeds through the
identities

u(τ) = z0(τ) − z1(τ) , u̇(τ) = v0(τ) − v1(τ) =
√

1 + [v1(τ)]2 − v1(τ) , (88)

where we used the normalisation vµvµ = −1. It follows that

v1(τ) = 1 − u̇(τ)2

2u̇(τ) , v0(τ) = 1 + u̇(τ)2

2u̇(τ) , (89)

where we used that zµ(τ) is a future-directed curve such that v0 > 0 and u̇(τ) >
0, and from this finally

zµ(τ) = zµ(0) +
∫ τ

0
vµ(σ) dσ , v(z(τ)) = v(u(τ)) = v(0) +

∫ τ

0

1
u̇(σ) dσ . (90)

Analogously, for the second integral we have to use

u(z(τ)) = u(v(τ)) = u(0) +
∫ τ

0

1
v̇(σ) dσ . (91)

To bound (87), we estimate the terms in brackets by their supremum:∣∣∣∣f(τ)∂τ

[
∂u(z)W (x, z)

]
z=z(τ)

+ f(τ)∂τ ln(v0 − v1)
[
∂u(z)W (x, z)

]
z=z(τ)

+ ∂τ f(τ)
[
∂u(z)W (x, z)

]
z=z(τ)

∣∣∣∣
≤ 1

1 + µ2u(z(τ))2 sup
τ

∣∣∣∣[1 + µ2u(z(τ))2]
[
f(τ)∂τ

[
∂u(z)W (x, z)

]
z=z(τ)

+ f(τ)∂τ ln(v0 − v1)
[
∂u(z)W (x, z)

]
z=z(τ)

+ ∂τ f(τ)
[
∂u(z)W (x, z)

]
z=z(τ)

]∣∣∣∣
(92)

and the analogous estimate for the second integral, as well as

|ln[µ(ϵ + iu(y, z(τ)))]| ≤ |ln[µ|u(y, z(τ))|]| + π

2 , (93)

which holds in the limit ϵ → 0. The remaining dependence on x can then be
absorbed in the adiabatic cutoff functions g(x) as in the proof of [27, Thm. 5]. For
the remaining integral over u(z(τ)) or v(z(τ)), we use the bound [27, Eq. (180)]∫

|ln |µu(z, x)||k

1 + µ2u(z)2 du(z) ≤ 2
µ

ck lnk(2 + µ|u(x)|) (94)

and
∫

[1+µ2u(z)2]−1 du(z) = π/µ. As in the proof of [27, Thm. 5], the logarithm
can again be absorbed in the adiabatic cutoff functions g(x).
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For the Feynman parametrices HF, using (86) instead of (85) the same pro-
cedure leads to∫ 1

2(vµvν + wµwν)∂z
µW (x, z)∂z

νHF(y, z)
∣∣∣∣
z=z(τ)

f(τ) dτ

= − i
4π

∫ [
f(τ)∂τ

[
∂u(z)W (x, z)

]
z=z(τ)

+ f(τ)∂τ ln(v0 − v1)
[
∂u(z)W (x, z)

]
z=z(τ)

+ ∂τ f(τ)
[
∂u(z)W (x, z)

]
z=z(τ)

][
Θ(y0 + z0(τ)) ln[µ(ϵ + iu(y, z(τ)))]

+ Θ(−y0 − z0(τ)) ln[µ(ϵ − iu(y, z(τ)))]
]

du(z(τ))

− i
4π

∫ [
f(τ)∂τ

[
∂v(z)W (x, z)

]
z=z(τ)

+ f(τ)∂τ ln(v0 + v1)
[
∂v(z)W (x, z)

]
z=z(τ)

+ ∂τ f(τ)
[
∂v(z)W (x, z)

]
z=z(τ)

][
Θ(y0 + z0(τ)) ln[µ(ϵ + iv(y, z(τ)))]

+ Θ(−y0 − z0(τ)) ln[µ(ϵ − iv(y, z(τ)))]
]

dv(z(τ))

− 1
4

∫
v0δ(y0 − z0(τ)) sgn[y1 − z1(τ)]

×
[
(v0 + v1)∂v(z)W (x, z) − (v0 − v1)∂u(z)W (x, z)

]
z=z(τ)

f(τ) dτ , (95)

and the first two terms can be bounded in the same way as for the Wightman
parametrix, using that |Θ(x)| ≤ 1. For the last term, we use the δ to perform
the integral over τ , using (84) to change variables. This gives

v0 dτ = dz0(τ) , (96)

and then we can estimate this term by its supremum over all τ :∣∣∣∣ − 1
4

∫
v0δ(y0 − z0(τ)) sgn[y1 − z1(τ)]

×
[
(v0 + v1)∂v(z)W (x, z) − (v0 − v1)∂u(z)W (x, z)

]
z=z(τ)

f(τ) dτ

∣∣∣∣
≤ 1

4 sup
τ

∣∣∣∣[(v0 + v1)∂v(z)W (x, z) − (v0 − v1)∂u(z)W (x, z)
]

z=z(τ)
f(τ)

∣∣∣∣ .

(97)

Again, the dependence on x can be absorbed in the adiabatic cutoff functions
g(x) as in the proof of [27, Thm. 5].

Lastly, we need to consider terms with products of two Hadamard paramet-
rices appearing in the first term of (71), either at the same point or at two
different points. We first compute the analogue of (82)∫ 1

2(vµvν + wµwν)∂z
µH(x, z)∂z

νH(y, z)
∣∣∣∣
z=z(τ)

f(τ) dτ

=
∫ [

(v0 − v1)2∂u(z)H(x, z)∂u(z)H(y, z)

+ (v0 + v1)2∂v(z)H(x, z)∂v(z)H(y, z)
]

z=z(τ)
f(τ) dτ ,

(98)
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and then start with the case of equal points x = y. As in the space-time smearing
case, only products of two Wightman parametrices or two Feynman parametri-
ces appear, for which we have computed the relevant expressions (54) and (55)
for products of their derivatives. Again, the logarithmically divergent term ap-
pearing for the Feynman parametrices (53) drops out since it is proportional to
the metric ηµν and thus vanishes when contracted with vµvν + wµwν , and we
also recall that we have used a redefinition of time-ordered products to get rid
of the local terms in (54). It follows that both for the Wightman and Feynman
parametrices, we have

∫ 1
2(vµvν + wµwν)

[
∂z

µH(x, z)∂z
νH(x, z)

]ren
∣∣∣∣
z=z(τ)

f(τ) dτ

=
∫ 1

2(vµvν + wµwν)∂z
µH(x, z)∂z

νH(x, z)
∣∣∣∣
z=z(τ)

f(τ) dτ

= − i
4π

∫ [
(v0 − v1)2∂2

u(z)H(x, z) + (v0 + v1)2∂2
v(z)H(x, z)

]
z=z(τ)

f(τ) dτ ,

(99)

and analogously to (85) and (86) we convert the u and v derivatives into τ
derivatives. We compute

[
(v0 − v1)2∂2

uH(x, z) + (v0 + v1)2∂2
vH(x, z)

]
z=z(τ)

= ∂2
τ H(x, z(τ)) − 2

[
∂u(z)∂v(z)H(x, z)

]
z=z(τ)

− [∂τ (v0 − v1)]
[
∂u(z)H(x, z)

]
z=z(τ) − [∂τ (v0 + v1)]

[
∂v(z)H(x, z)

]
z=z(τ) ,

(100)

and for a Wightman parametrix we have ∂u(z)∂v(z)H
+(x, z) = 0, while for a

Feynman parametrix ∂u(z)∂v(z)H
F(x, z) = − 1

4 δ2(x − z) (33). The remaining u
and v derivatives we can convert into τ derivatives using (85) and (86), partially
integrate all τ derivatives to act on the test function f or the vµ(τ), and then
bound the result completely analogous to the previous case of a product of W
and one parametrix.

The only potentially problematic term is the local one ∼ δ2(x − z(τ)) that
appears for a product of Feynman parametrices, whose contribution to (98) (for
the Feynman parametrix) is

− i
8π

∫
δ2(x − z(τ))f(τ) dτ , (101)
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and whose contribution to the first term of (71) and thus the expectation value
of the interacting energy density (70) reads

− i
8π

β2
∞∑

n=0

2n∑
k=0

min(k,n)∑
ℓ=max(0,k−n)

(−1)k+n

ℓ!(k − ℓ)!(n − ℓ)!(n − k + ℓ)!

∫
· · ·

∫

×
∫  n∑

i=ℓ+1
δ2(xi − z(τ)) +

n∑
j=k−ℓ+1

δ2(yj − z(τ))

f(τ) dτ

× Ek,ℓ,2n,n−ℓ(x⃗; y⃗)
n∏

i=1
g(xi)g(yi) d2xi d2yi ,

(102)

where because of the Kronecker δ2(ℓ+m),n we replaced n → 2n and then per-
formed the sum over m. Let us thus consider one of the terms, say with δ2(xn −
z(τ)) which allows us to perform the integral over xn and bound the result by

β2

8π

∞∑
n=0

2n∑
k=0

min(k,n)∑
ℓ=max(0,k−n)

1
ℓ!(k − ℓ)!(n − ℓ)!(n − k + ℓ)!

∫
· · ·

∫ ∣∣∣Ek,ℓ,2n,n−ℓ(ˆ⃗x; y⃗)
∣∣∣

×
n−1∏
i=1

|g(xi)||g(yi)| d2xi d2yi |g(z(τ))||f(τ)| dτ |g(yn)| d2yn , (103)

where ˆ⃗x = {x1, . . . , xn−1, z(τ)}. However, after the shift n → n + 1 this is now
of the same form as the bounds (74) for the vertex operators in (71), which
are given by (78), and so also the local terms are suitably bounded, taking into
account that there n − ℓ + n − (k − ℓ) = 2n − k ≤ 2n of them (102).

Finally, we need to consider terms with products of two Hadamard paramet-
rices at two different points, for which we still use (98). However, now we use
that [27, Eq. (198)]

∂u(z)H
F(z, x)∂u(z)H

F(z, y) = 1
32π2 ∂2

u(z) ln
[
µ2u(z, a)2]

(104)

for some point a such that min(u(x), u(y)) ≤ u(a) ≤ max(u(x), u(y)), and the
analogous result for v or for the product of two Wightman parametrices. We
can then convert the u(z) and v(z) derivatives into τ derivatives using (84), and
obtain∫ 1

2(vµvν + wµwν)∂z
µH(x, z)∂z

νH(y, z)
∣∣∣∣
z=z(τ)

f(τ) dτ

= 1
32π2

∫ [
∂2

τ ln
[
µ2u(z(τ), a)2]

− ∂τ ln(v0 − v1)∂τ ln
[
µ2u(z(τ), a)2]

+ ∂2
τ ln

[
µ2v(z(τ), a′)2]

− ∂τ ln(v0 + v1)∂τ ln
[
µ2v(z(τ), a′)2]]

f(τ) dτ ,

(105)

where a′ may be different from a. Integrating the τ derivatives by parts and
changing integration variables to either u(z(τ)) or v(z(τ)) depending on the
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argument of the logarithm [using (84)], this gives∫ 1
2(vµvν + wµwν)∂z

µH(x, z)∂z
νH(y, z)

∣∣∣∣
z=z(τ)

f(τ) dτ

= 1
32π2

∫ 1
v0 − v1

[
f ′′(τ) + ∂τ

[
f(τ)∂τ ln(v0 − v1)

]]
ln

[
µ2u(z(τ), a)2]

du(z(τ))

+ 1
32π2

∫ 1
v0 + v1

[
f ′′(τ) + ∂τ

[
f(τ)∂τ ln(v0 + v1)

]]
ln

[
µ2v(z(τ), a′)2]

dv(z(τ)) ,

(106)

where now τ is a function of u(z(τ)) or v(z(τ)). We then estimate the terms
apart from the logarithm by their supremum:∣∣∣∣ 1

v0 − v1

[
f ′′(τ) + ∂τ

[
f(τ)∂τ ln(v0 − v1)

]]∣∣∣∣
≤ 1

1 + µ2u(z(τ))2 sup
τ

∣∣∣∣1 + µ2u(z(τ))2

v0 − v1

[
f ′′(τ) + ∂τ

[
f(τ)∂τ ln(v0 − v1)

]]∣∣∣∣ ,

(107)

and then use (94) to perform the integral over u(z(τ)), and the analogous esti-
mate for the integral over v(z(τ)). Finally, using that min(u(x), u(y)) ≤ u(a) ≤
max(u(x), u(y)) we estimate the resulting logarithm by

ln(2 + µ|u(a)|) ≤ ln(2 + µ|u(x)|) + ln(2 + µ|u(y)|) , (108)

and the logarithms can then be absorbed into the adiabatic cutoff functions
g(x). We see at this point that the bound (107) diverges in the limit where the
trajectory becomes light-like, v1 → ±v0. This precludes the direct extension of
our result to the null case, but for arbitrary time-like trajectories z(τ) that we
consider in this work we of course have a finite bound.

We then follow the same steps as in the proof of [27, Thm. 5] and use that
there are in total 4n2 products of Feynman or Wightman parametrices and W in
the product of derivatives of Gk,ℓ,n,m (41) in Θk,ℓ,n,m (71). We can thus bound
the contribution of these terms to the expectation value of the energy density at
order n by Cn2Kn(n!)1+ β2

4π as required, where the constants C and K depend
on f , g, β, W and z(τ). We note however that the dependence on W only comes
from the explicit W contained in Gk,ℓ,n,m, since due to our condition on W (11)
the W dependence in Ek,ℓ,n,m is bounded by 1 analogously to the bounds (78)
for the contribution from the vertex operators. Taking all together, we obtain a
bound of the same form as for a space-time smearing (57), and thus following
the same steps to estimate the sums we obtain the bound

|Eω(f)| ≤ C ′
∞∑

n=0

(n + 1)2(K ′)2n

(n!)1− β2
4π

< ∞ (109)

on the smeared quantum energy density, where C ′ and K ′ are new constants
depending on f , g, β, W and z(τ). ⊓⊔
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4. Proof of Theorem 3 (Quantum energy inequality)

To obtain the quantum energy inequality (16) in the interacting theory, we
suitably extend methods known from the free theory [32–34], namely writing
the energy density in point-split form and then separating it into a sum of a
positive and a bounded part, with the bounded part being state-independent.

We first note that the energy density when smeared with the square of a test
function f ∈ S(R) can be written in a point-split form

Eω(f2) = lim
Λ,ϵ→0

ωΛ,ϵ
(

Tint

[
T̂µν(vµvνf2)

])
=

∫
eω,f (τ, τ) dτ , (110)

where

eω,f (τ, τ ′) ≡ vµ(τ)vν(τ ′)f(τ)f(τ ′) lim
Λ,ϵ→0

ωΛ,ϵ
(

Tint

[
T̂ ∥

µν(z(τ), z(τ ′))
])

(111)

with the point-split stress tensor

T̂ ∥
µν(z, z′) ≡ ∂µϕ(z)∂νϕ(z′) − 1

2ηµν∂ρϕ(z)∂ρϕ(z′)

+ 1
2

(
1 − β2

8π

)
ηµν

[
g(z)(Vβ(z) + V−β(z)) + g(z′)(Vβ(z′) + V−β(z′))

]
.

(112)

Actually, since the time-ordered products involve renormalisation, and in par-
ticular the subtraction of the Hadamard parametrix which is singular as the
two points approach each other, it is more appropriate to define the point-split
value of the interacting time-ordered product of the point-split stress tensor in-
stead of the point-split stress tensor itself. So instead of Lemma 1, in particular
the interacting time-ordered product Tint[Oµν(z)] (43), we define a point-split
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time-ordered product by

Tint

[
O∥

µν(z, z′)
]

≡
∞∑

n=0

n∑
k=0

k∑
ℓ=0

n−k∑
m=0

(−1)kin

ℓ!(k − ℓ)!m!(n − k − m)!

∫
· · ·

∫
Ek,ℓ,n,m(x⃗; y⃗)

×

[
β2∂z

µGk,ℓ,n,m(x⃗; y⃗; z)∂z′

ν Gk,ℓ,n,m(x⃗; y⃗; z′) NG

ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


− β∂z

µGk,ℓ,n,m(x⃗; y⃗; z) NG

∂νϕ(z′)
ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


− β∂z′

ν Gk,ℓ,n,m(x⃗; y⃗; z′) NG

∂µϕ(z)
ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


+ NG

∂µϕ(z)∂νϕ(z′)
ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


+ ∂z

µ∂z′

ν W (z, z′) NG

ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)

]

×
(

Λ

µ

) β2(2(ℓ+m)−n)2
4π

ℓ+m∏
i=1

g(xi) d2xi

n−ℓ−m∏
j=1

g(yj) d2yj , (113)

and the point-split interacting time-ordered product of the stress tensor by

Tint

[
T̂ ∥

µν(z, z′)
]

≡ Tint

[
O∥

µν(z, z′)
]

− 1
2ηµνηρσTint

[
O∥

ρσ(z, z′)
]

+ 1
2

(
1 − β2

8π

)
ηµν

[
g(z)(Tint[Vβ(z)] + Tint[V−β(z)]) + (z ↔ z′)

]
.

(114)

Since the normal-ordered products of operators are continuous functions of the
insertion points and W is smooth, almost all terms in the point-split time-ordered
product (113) have a finite limit as z′ → z. Only the products of derivatives of
Gk,ℓ,m,n (41) which contain Hadamard parametrices need renormalisation in the
limit where the UV cutoff ϵ → 0, but as we have seen in the proof of Theorem 1,
the required counterterms are proportional to ηµν (53) and thus cancel in the
stress tensor. We thus have

lim
z′→z

Tint

[
T̂ ∥

µν(z, z′)
]

= Tint

[
T̂µν(z)

]
(115)

with the point-split stress tensor (114), and moreover the point-split quantity
eω,f (τ, τ ′) (111) is continuous in τ and τ ′. All the hypotheses of [34, Lemma 2.12]
are thus fulfilled and we can apply it and obtain

Eω(f2) =
∫

eω,f (τ, τ) dτ = lim
δ→0+

∫
e−δξ2

(Feω,f )(−ξ, ξ) dξ

2π
, (116)
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where the Fourier transform is defined by

(Fg)(ξ, ζ) ≡
∫∫

eiξτ+iζσg(τ, σ) dτ dσ . (117)

Since [34, Lemma 2.12] is only applicable to functions of compact support, we
temporarily restrict to test functions f of compact support, and obtain the final
result for arbitrary Schwartz functions f by a limit argument. Moreover, since
eω,f (τ, τ ′) is by construction symmetric in τ and τ ′, the integrand in (116) is
invariant under the change ξ → −ξ, and so we may restrict the integration to
positive ξ, obtaining a factor of 2. That is, to prove the QEI (16) we need to
show that

EN
ω (f2) = 2 lim

δ→0+

∫ ∞

0
e−δξ2

(Feω,fN
)(−ξ, ξ) dξ

2π
≥ −K(z, fN ) (118)

and that limN→∞ K(z, fN ) < ∞, where fN ∈ Sc(R) is a sequence of test func-
tions of compact support converging to f .2

However, we will need [34, Lemma 2.12] only for some part of the bound,
where it is technically difficult to take the limit τ ′ → τ directly in position
space and then integrate over τ . To show the quantum energy inequality (16),
we first split the energy density eω,f (111) into a positive part and a part that
we can bound independently of the state. The latter part is furthermore split
into several terms, one of which requires the use of [34, Lemma 2.12] in the
form (118), while the other ones can be bounded directly. We will see that the
positive part is given by

1
2

[
vµ(τ)vν(τ ′) + wµ(τ)wν(τ ′)

] (
Tint[∂µϕ(z(τ))]

)†
⋆ Tint[∂νϕ(z(τ ′))] , (119)

the star product of two interacting time-ordered products of derivatives of the
field ∂µϕ, for which we could use the result (40). However, the computation is
shortened by inserting the Bogoliubov formula (19) and using that

(
T [O1(f1) ⊗ · · · ⊗ Ok(fk)]

)†
= T

[
O†

1(f∗
1 ) ⊗ · · · ⊗ O†

k(f∗
k )

]
(120)

as well as the star inverse (18), such that

(
Tint[∂µϕ(z)]

)†
⋆ Tint[∂νϕ(z′)] = T

[
e−iSint

⊗ ⊗ ∂µϕ(z)
]

⋆ T
[
eiSint

⊗ ⊗ ∂νϕ(z′)
]

.

(121)

2 We could also restrict to negative ξ, but this would ultimately result in a trivial QEI with
limN→∞ K(z, fN ) = ∞ [34].
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A quite long but straightforward computation using the result (35), the analo-
gously determined

T

 n⊗
j=1

Vαj (xj) ⊗ ϕ(z)

 = exp

−i
∑

1≤i<j≤n

αiαjHD(xi, xj)


×

[
NG

ϕ(z)
n∏

j=1
Vαj

(xj)

 −
n∑

i=1
αiG

D(xi, z)NG

 n∏
j=1

Vαj
(xj)

]

× exp

−1
2

n∑
i,j=1

αiαjW (xi, xj)

(
Λ

µ

) (
∑n

k=1
αk)2

4π

,

(122)

the formula (38) for the star product and the explicit form of the two-point
function (27) then gives

(
Tint[∂µϕ(z)]

)†
⋆ Tint[∂νϕ(z′)]

=
∞∑

n=0

n∑
k=0

k∑
ℓ=0

n−k∑
m=0

(−1)kin

ℓ!(k − ℓ)!m!(n − k − m)!

∫
· · ·

∫
Ek,ℓ,n,m(x⃗; y⃗)

×

[
β2∂z

µGk,ℓ,n,m(x⃗; y⃗; z)∂z′

ν Gk,ℓ,n,m(x⃗; y⃗; z′) NG

ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


− β∂z

µGk,ℓ,n,m(x⃗; y⃗; z) NG

∂νϕ(z′)
ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


− β∂z′

ν Gk,ℓ,n,m(x⃗; y⃗; z′) NG

∂µϕ(z)
ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


+ NG

∂µϕ(z)∂νϕ(z′)
ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


+ i∂z

µ∂z′

ν G+(z, z′) NG

ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)

]

×
(

Λ

µ

) β2(2(ℓ+m)−n)2
4π

ℓ+m∏
i=1

g(xi) d2xi

n−ℓ−m∏
j=1

g(yj) d2yj , (123)

where we used that the (anti-)time-ordered products are symmetric in their
arguments, and that there are k!/[ℓ!(k − ℓ)!] ways to choose ℓ vertex operators
Vβ with positive sign from a total of k ones V±β with either sign. We also
renamed the insertion points of the V−β operators to yj , and recall that Ek,ℓ,n,m
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and Gk,ℓ,n,m are defined by (42) and (41), while

Gk,ℓ,n,m(x⃗; y⃗; z) ≡
ℓ∑

i=1
HD(z, xi) +

ℓ+m∑
i=ℓ+1

H+(z, xi) −
k−ℓ∑
j=1

HD(z, yj)

−
n−ℓ−m∑

j=k−ℓ+1
H+(z, yj) − i

ℓ+m∑
i=1

W (z, xi) + i
n−ℓ−m∑

j=1
W (z, yj) .

(124)

Contracting with vµvν and comparing with (113), we see that the point-split
quantum energy density (111) with the interacting time-ordered product of the
stress tensor (114) can be written as

eω,f (τ, τ ′) = 1
2f(τ)f(τ ′)

[
vµ(τ)vν(τ ′) + wµ(τ)wν(τ ′)

]
× lim

Λ,ϵ→0
ωΛ,ϵ

((
Tint[∂µϕ(z)]

)†
⋆ Tint[∂νϕ(z′)]

)
+ 1

2f(τ)f(τ ′)
[
vµ(τ)vν(τ ′) + wµ(τ)wν(τ ′)

]
×

∞∑
n=0

n∑
k=0

k∑
ℓ=0

n−k∑
m=0

(−1)kinδ2(ℓ+m),n

ℓ!(k − ℓ)!m!(n − k − m)!

∫
· · ·

∫
Ek,ℓ,n,m(x⃗; y⃗)

×
[
β2∂z

µ

[
Gk,ℓ,n,m(x⃗; y⃗; z) − Gk,ℓ,n,m(x⃗; y⃗; z)

]
∂z′

ν Gk,ℓ,n,m(x⃗; y⃗; z′)

− i∂z
µ∂z′

ν H+(z, z′)
] ℓ+m∏

i=1
g(xi) d2xi

n−ℓ−m∏
j=1

g(yj) d2yj

− 1
2

(
1 − β2

8π

)
f(τ)f(τ ′)

[
g(z(τ)) lim

Λ,ϵ→0

× ωΛ,ϵ(Tint[Vβ(z(τ))] + Tint[V−β(z(τ))]) + (τ ↔ τ ′)
]

, (125)

where after taking the derivatives we set z = z(τ) and z′ = z(τ ′). Here, we used
again that only neutral configurations remain in the limit Λ → 0. The first term
is the positive part, which would be obvious from the positivity of the state ω,
except for the IR divergence of the state. However, we will show below that it is
indeed positive. The second and third term comprise the bounded part, and we
will show below a state-independent bound for it.

Let us first consider the positivity of the first term of (125). Since it is of
the form ωΛ,ϵ(A† ⋆ A) and ω is a quasi-free state, it is positive if the two-point
function (27) of ω is positive definite. However, ω is indefinite since positiv-
ity of the two-point function (27) holds only for test functions with vanishing
mean (10): for the Hadamard parametrix H+ by direct computation, and for
the state-dependent part W by our condition of conditional positive semidefi-
niteness. Therefore, to show positivity of (125) we need to construct an auxil-
iary state ω̃, whose two-point function has the same behaviour as ω in the limit
Λ → 0 (i.e., the difference of their two-point functions converges to 0), but is
positive for all Λ > 0. In principle, this is the massive extension of our massless
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state, but its construction is not fully trivial. We first use that as Λ → 0 we
have [35, Eq. (10.31.2)]

K0

[
2Λe−γ

√
(ϵ + iu)(ϵ + iv)

]
= −1

2 ln
[
Λ2(ϵ + iu)(ϵ + iv)

]
+ O

(
Λ2 ln Λ

)
(126)

for the second modified Bessel function K, and using the integral [35, Eq. (10.32.10)]
we compute that

K0

[
M

√
(ϵ + iu)(ϵ + iv)

]
=

∫ ∞

0
exp

[
−a

2M(ϵ + iu) − M

2a
(ϵ + iv)

]
1
2a

da (127)

for M > 0. We further compute

∂2 K0

[
M

√
(ϵ + iu)(ϵ + iv)

]
= −4∂u∂v K0

[
M

√
(ϵ + iu)(ϵ + iv)

]
= M2

∫ ∞

0
exp

[
−a

2M(ϵ + iu) − M

2a
(ϵ + iv)

]
1
2a

da

= M2 K0

[
M

√
(ϵ + iu)(ϵ + iv)

]
, (128)

using that the a integral is absolutely convergent for ϵ > 0 such that we can
differentiate under the integral sign. It follows that(

∂2 − 4Λ2e−2γ
)

K0

[
2Λe−γ

√
(ϵ + iu)(ϵ + iv)

]
= 0 , (129)

and we see that we have obtained a suitable massive extension of our massless
Hadamard parametrix H+(x, y).

For the state-dependent part W (x, y), the construction is more involved. For
this, we use that in two dimensions solutions of the massless Klein–Gordon equa-
tion split into functions that depend on only one light-cone coordinate: the gen-
eral solution of ∂2f(x) = 0 is f(x) = fu(u(x))+fv(v(x)) since the d’Alembertian
factorises according to ∂2 = −4∂u∂v. Since ∂2

xW (x, y) = ∂2
yW (x, y) = 0, this

generalises to

W (x, y) = Wuu(u(x), u(y)) + Wuv(u(x), v(y))
+ Wvu(v(x), u(y)) + Wvv(v(x), v(y)) ,

(130)

where Wuu, Wuv, Wvu and Wvv are smooth functions. Because of the symmetry
W (x, y) = W (y, x), Wuu and Wvv are symmetric in their arguments, while
Wvu(u, v) = Wuv(v, u). Passing to Fourier space in each variable, we obtain

Wuv(u(x), v(y)) =
∫

W̃uv(p, q) eipu(x)+iqv(y) dp dq

(2π)2 (131)

and the analogous expressions for Wuu, Wvu and Wvv, where the symmetry leads
to W̃vu(p, q) = W̃uv(q, p). The conditionally positive semidefiniteness (8) of W
reads in Fourier space∫∫ [

W̃uu(p, q) f̃(−p, 0)f̃∗(q, 0) + W̃vu(p, q) f̃(0, −p)f̃∗(q, 0)

+ W̃uv(p, q) f̃(−p, 0)f̃∗(0, q) + W̃vv(p, q) f̃(0, −p)f̃∗(0, q)
] dp dq

(2π)2 ≥ 0

(132)
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for all f̃ ∈ S(R2) with f̃(0, 0) = 0, where

f̃(p, q) ≡
∫∫

f(u, v)e−ipu−iqv du dv (133)

is the Fourier transform of the test function f . Since f is arbitrary, the condi-
tion (132) actually separates in individual conditions for Wuu, Wvv and Wuv:

∫∫
W̃uu(p, q) g̃(−p)g̃∗(q) dp dq

(2π)2 ≥ 0 , (134a)∫∫
W̃vv(p, q) h̃(−p)h̃∗(q) dp dq

(2π)2 ≥ 0 , (134b)∫∫
W̃uv(p, q)

[
h̃(−q)g̃∗(p) + g̃(−p)h̃∗(q)

] dp dq

(2π)2 ≥ 0 , (134c)

where now g, h ∈ S(R) with g̃(0) = h̃(0) = 0.3 Since by assumption W and thus
its components Wuu and so on are smooth functions, the Fourier coefficients
W̃uu and so on have fast decay at infinity. We can thus define

WM (x, y) ≡
∫∫

W̃uu(p, q) eipu(x)+i M2
4p v(x)eiqu(y)+i M2

4q v(y) dp dq

(2π)2

+
∫∫

W̃vu(p, q) ei M2
4p u(x)+ipv(x)eiqu(y)+i M2

4q v(y) dp dq

(2π)2

+
∫∫

W̃uv(p, q) eipu(x)+i M2
4p v(x)ei M2

4q u(y)+iqv(y) dp dq

(2π)2

+
∫∫

W̃vv(p, q) ei M2
4p u(x)+ipv(x)ei M2

4q u(y)+iqv(y) dp dq

(2π)2 ,

(135)

where the integrals are absolutely convergent and which by construction fulfills(
∂2

x − M2)
W (x, y) =

(
∂2

y − M2)
W (x, y) = 0 . (136)

Note that in the case where W (x, y) is the Fourier transform of a positive
measure, we have Wuv = Wvu = 0 and W̃uu(p, q) dp dq = δ(p + q) dµW,u(p),
W̃vv(p, q) dp dq = δ(p + q) dµW,v(p), and the formulas above need to be adjusted
accordingly. For example, this is the case for the state (13), where we compute

W̃uu(p, q) dp dq = W̃vv(p, q) dp dq

= δ(p + q)Θ(|p| ∈ [E0, E1]) πe−β|p|

|p|
(
1 − e−β|p|

) dp dq
(137)

and

WM (x, y) = 1
4π

∫
Θ(|p| ∈ [E0, E1]) e−β|p|

|p|
(
1 − e−β|p|

)
×

[
eipu(x,y)+i M2

4p v(x,y) + ei M2
4p u(x,y)+ipv(x,y)

]
dp .

(138)

3 For example, the condition for W̃uu is obtained by taking f̃(p, q) such that f̃(0, q) = 0 and
defining g̃(p) ≡ f̃(p, 0).
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We then define the quasi-free state ω̃Λ,ϵ with two-point function

ω̃Λ,ϵ(ϕ(x) ⋆ ϕ(y)) = 1
2π

K0

[
2Λe−γ

√
(ϵ + iu(x, y))(ϵ + iv(x, y))

]
+ W2Λe−γ (x, y) ,

(139)
which is the two-point function in the massive theory with mass M = 2Λe−γ .
For the smeared two-point function, it follows that∫∫

ω̃Λ,ϵ(ϕ(x) ⋆ ϕ(y))f(x)f∗(y) d2x d2y

= 1
2π

∫ ∞

0

∣∣∣∣∫ f(x) exp
[
−iaΛe−γ(x0 − x1) − iΛe−γ

a
(x0 + x1)

]
d2x

∣∣∣∣2

× exp
[
−aΛe−γϵ − Λe−γ

a
ϵ

]
1
2a

da +
∫∫

W2Λe−γ (x, y)f(x)f∗(y) d2x d2y

(140)

for an arbitrary test function f ∈ S(R2), where we could interchange the integral
over a with the ones over x and y for all Λ, ϵ > 0 because of absolute convergence,
and the first term is obviously positive. To show positivity for the second term,
we pass to Fourier space and obtain∫∫

WM (x, y)f(x)f∗(y) d2x d2y

=
∫∫

W̃uu(p, q) g̃(−p)g̃∗(q) dp dq

(2π)2 +
∫∫

W̃vv(p, q) h̃(−p)h̃∗(q) dp dq

(2π)2

+
∫∫

W̃uv(p, q)
[
g̃(−p)h̃∗(q) + g̃∗(p)h̃(−q)

] dp dq

(2π)2 ,

(141)

where

g̃(p) ≡ f̃

(
p,

M2

4p

)
=

∫∫
f(u, v)e−ipu−i M2

4p v du dv , h̃(p) ≡ f̃

(
M2

4p
, p

)
. (142)

Since the Fourier transform is an isomorphism between Schwartz spaces, it fol-
lows that f̃ ∈ S(R2), and in particular for all M > 0 we have

lim
p→0

g̃(p) = lim
p→0

h̃(p) = 0 . (143)

Using the conditions (134), we see that each term in (141) is non-negative, and
hence we have

∫∫
WM (x, y)f(x)f∗(y) d2x d2y ≥ 0 for all f ∈ S(R2), so that (140)∫∫

ω̃Λ,ϵ(ϕ(x) ⋆ ϕ(y))f(x)f∗(y) d2x d2y ≥ 0 (144)

for all Λ, ϵ > 0. We then obtain that∫∫
f(τ)f(τ ′)vµ(τ)vν(τ ′) ω̃Λ,ϵ

((
Tint[∂µϕ(z)]

)†
⋆ Tint[∂νϕ(z′)]

)
dτ dτ ′ ≥ 0

(145)
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for all Λ, ϵ > 0, and thus also in the limit where the regulators vanish, and the
same with vµvν replaced by wµwν . Since by construction

lim
Λ→0

ωΛ,ϵ(F ) = lim
Λ→0

ω̃Λ,ϵ(F ) (146)

whenever the limit is finite, it follows that the first term of (125) is positive, and
integrating over τ we obtain a positive contribution to Eω(f2) (116).

For the remaining terms in (125), we want to show that they are bounded.
We start with the Hadamard parametrix H+(z, z′), that is the series

− i
2f(τ)f(τ ′)

[
vµ(τ)vν(τ ′) + wµ(τ)wν(τ ′)

]
×

∞∑
n=0

n∑
k=0

k∑
ℓ=0

n−k∑
m=0

(−1)kinδ2(ℓ+m),n

ℓ!(k − ℓ)!m!(n − k − m)!

∫
· · ·

∫
Ek,ℓ,n,m(x⃗; y⃗)

× ∂z
µ∂z′

ν H+(z, z′)
ℓ+m∏
i=1

g(xi) d2xi

n−ℓ−m∏
j=1

g(yj) d2yj .

(147)

Since the sum is independent of z and z′, we can simplify it further. Namely,
from the Sine–Gordon interaction (24), the results (30) and (36) for the (anti-
)time-ordered products of vertex operators, the formula (38) for the star product
and the explicit form of the two-point function (27) we obtain

T
[
e−iSint

⊗

]
⋆ T

[
eiSint

⊗

]
=

∞∑
n=0

n∑
k=0

(−1)kin

k!(n − k)!

∫
· · ·

∫ ∑
σj=±1

T

[
k⊗

i=1
Vσiβ(xi)

]

⋆ T

 n⊗
j=k+1

Vσjβ(xj)

 n∏
j=1

g(xj) d2xj

=
∞∑

n=0

n∑
k=0

k∑
ℓ=0

n−k∑
m=0

(−1)kin

ℓ!(k − ℓ)!m!(n − k − m)!

∫
· · ·

∫
Ek,ℓ,n,m(x⃗; y⃗)

× NG

ℓ+m∏
i=1

Vβ(xi)
n−ℓ−m∏

j=1
V−β(yj)


×

(
Λ

µ

) β2(2(ℓ+m)−n)2
4π

ℓ+m∏
i=1

g(xi) d2xi

n−ℓ−m∏
j=1

g(yj) d2yj (148)

by a long but straightforward computation. As before, we used that the (anti-
)time-ordered products are symmetric in their arguments, that there are k!/[ℓ!(k−
ℓ)!] ways to choose ℓ vertex operators Vβ with positive sign from a total of k
ones V±β with either sign, and renamed the insertion points of the V−β opera-
tors to yj . Taking the expectation value in the state ωΛ,ϵ and the limit Λ → 0,
only terms with n = 2(ℓ + m) give a non-vanishing contribution, and renaming
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n → 2n we obtain

∞∑
n=0

2n∑
k=0

min(k,n)∑
ℓ=max(0,k−n)

(−1)k+n

ℓ!(k − ℓ)!(n − ℓ)!(n − k + ℓ)!

∫
· · ·

∫
Ek,ℓ,2n,n−ℓ(x⃗; y⃗)

×
n∏

i=1
g(xi) d2xi

n∏
j=1

g(yj) d2yj = ω
(

T
[
e−iSint

⊗

]
⋆ T

[
eiSint

⊗

])
= 1 , (149)

where the last equality follows because T
[
e−iSint

⊗

]
= T

[
eiSint

⊗

]⋆(−1)
(18). Since g

is arbitrary, we conclude that

Sx⃗;y⃗

2n∑
k=0

min(k,n)∑
ℓ=max(0,k−n)

(−1)k+n

ℓ!(k − ℓ)!(n − ℓ)!(n − k + ℓ)!Ek,ℓ,2n,n−ℓ(x⃗; y⃗) = 0 (150)

for all n ≥ 1, where Sx⃗;y⃗ indicates symmetrisation of the xi and yj among
themselves; since Ek,k−ℓ,2n,n−k+ℓ(y⃗; x⃗) = Ek,ℓ,2n,n−ℓ(x⃗; y⃗) as well as k−max(0, k−
n) = min(k, n) and k−min(k, n) = max(0, k−n), the change of summation index
ℓ → k − ℓ shows that the sum is already symmetric under the interchange of xi

and yi. That is, the sum in (147) collapses to the single term with n = 0, which
is the free-theory contribution

h(τ, τ ′) ≡ − i
2f(τ)f(τ ′)

[
vµ(τ)vν(τ ′) + wµ(τ)wν(τ ′)

]
× ∂z

µ∂z′

ν H+(z, z′)
∣∣∣
z=z(τ),z′=z(τ ′)

.
(151)

To bound the contribution of (151) to the total energy density Eω(f2), we
compare the actual trajectory zµ(τ) with a stationary one zµ = δµ

0 τ , and bound
each part separately. For this, we use that since the curve zµ(τ) is future-directed
we have (84)

∂τ u(z(τ)) =
√

1 + [v1(τ)]2 − v1(τ) > 0 , (152)

and therefore we can view τ as function of u using the inverse function theorem.
Following [32], we then define

∆u
µν(τ, τ ′) ≡ ∂z

µ∂z′

ν

[
ln(ϵ + iu(z, z′)) − ln[ϵ + i(τ(u(z)) − τ(u(z′)))]

]
z=z(τ),z′=z(τ ′)

=
(
δ0

µ − δ1
µ

)(
δ0

ν − δ1
ν

) ∂

∂u(z)
∂

∂u(z′)

×
[

ln[ϵ + iu(z) − iu(z′)] − ln[ϵ + iτ(u(z)) − iτ(u(z′))]
]

z=z(τ),z′=z(τ ′)
.

(153)

Using that as ϵ → 0 we have

ln[ϵ + iu(z) − iu(z′)] = ln |u(z) − u(z′)| + iπ
2 sgn[u(z) − u(z′)] (154)
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and the analogous expression with τ(u), and that sgn[τ(u(z)) − τ(u(z′))] =
sgn[u(z) − u(z′)] since τ is a monotone function of u, we can simplify (153) to

∆u
µν(τ, τ ′) =

(
δ0

µ − δ1
µ

)(
δ0

ν − δ1
ν

) ∂

∂u(z)
∂

∂u(z′)

×
[

ln |u(z) − u(z′)| − ln |τ(u(z)) − τ(u(z′))|
]

z=z(τ),z′=z(τ ′)

=
(
δ0

µ − δ1
µ

)(
δ0

ν − δ1
ν

)
×

[
1

[u(z) − u(z′)]2
− τ ′(u(z))τ ′(u(z′))

[τ(u(z)) − τ(u(z′))]2

]
z=z(τ),z′=z(τ ′)

(155)

and

lim
τ ′→τ

∆u
µν(τ, τ ′) =

(
δ0

µ − δ1
µ

)(
δ0

ν − δ1
ν

)3[τ ′′(u(z))]2 − 2τ ′(u(z))τ ′′′(u(z))
12[τ ′(u(z))]2 , (156)

which was already determined in [32, Eq. (2.17)]. From (152), we obtain

τ ′(u(z)) = [∂τ u(z(τ))]−1 = 1
v0(z(τ)) − v1(z(τ)) , (157)

and it follows that [with vµ(τ) ≡ vµ(z(τ))]

∆u
µν(τ, τ) = −

(
δ0

µ − δ1
µ

)(
δ0

ν − δ1
ν

)
3[v0(τ) − v1(τ)] 3

2

∂2

∂τ2
1√

v0(τ) − v1(τ)
. (158)

The analogous computation establishes that

∆v
µν(τ, τ ′) ≡ ∂z

µ∂z′

ν

[
ln(ϵ + iv(z, z′)) − ln[ϵ + i(τ(v(z)) − τ(v(z′)))]

]
z=z(τ),z′=z(τ ′)

→ −
(
δ0

µ + δ1
µ

)(
δ0

ν + δ1
ν

)
3[v0(τ) + v1(τ)] 3

2

∂2

∂τ2
1√

v0(τ) + v1(τ)
(τ ′ → τ) ,

(159)

using that also

∂τ v(z(τ)) = ∂τ

[
z0(τ) + z1(τ)

]
= v0(τ) + v1(τ) =

√
1 + [v1(τ)]2 + v1(τ) > 0 .

(160)
By construction, the ∆u/v measure the difference between the parametrix on
the actual trajectory zµ(τ) and an auxiliary stationary one zµ = δµ

0 τ , and we
see that this is finite, but possibly large if the trajectory is almost light-like with
v1 ≈ ±v0. In particular, it diverges in the light-like limit v1 → ±v0, and we
see again that we cannot simply take this limit to arrive at the result for a null
trajectory.
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Using the explicit expression for the Hadamard parametrix (28), we can thus
decompose (151) in the form

h(τ, τ ′) = 1
8π

f(τ)f(τ ′)
[
vµ(τ)vν(τ ′) + wµ(τ)wν(τ ′)

]
×

[
∆u

µν(τ, τ ′) + ∆v
µν(τ, τ ′) + ∂z

µ∂z′

ν ln[ϵ + i(τ(u(z)) − τ(u(z′)))]

+ ∂z
µ∂z′

ν ln[ϵ + i(τ(v(z)) − τ(v(z′)))]
]

z=z(τ),z′=z(τ ′)

≡ h∆(τ, τ ′) + h0(τ, τ ′) , (161)

where h∆ is the part containing ∆u/v. In this part, we can take the limit τ ′ → τ ,
which results in

h∆(τ, τ) = − 1
12π

f2(τ)
[√

v0(τ) − v1(τ) ∂2

∂τ2
1√

v0(τ) − v1(τ)

+
√

v0(τ) + v1(τ) ∂2

∂τ2
1√

v0(τ) + v1(τ)

]
= − 1

24π
f2(τ) [v̇1(τ)]2

1 + [v1(τ)]2 ,

(162)

where we used that w1 = v0, w0 = v1 and that v0(τ) =
√

1 + [v1(τ)]2, which
follows from the normalisation vµvµ = −1. For h0(τ, τ ′) which contains the
contribution from the straight trajectory, we replace f by a real-valued test
function fN with compact support, call the resulting expression h0

N and bound
the contribution of this term to the energy density using (118). We thus have to
compute ∫

h0
N (τ, τ) dτ = 2 lim

δ→0+

∫ ∞

0
e−δξ2

(Fh0
N )(−ξ, ξ) dξ

2π
(163)

with the Fourier transform (117)

(Fh0
N )(ξ, ζ) =

∫∫
eiξτ+iζσh0

N (τ, σ) dτ dσ

= 1
2π

∫∫
eiξτ+iζσfN (τ)fN (σ) 1

(τ − σ − iϵ)2 dτ dσ ,

(164)

where we performed the derivatives in h0
N (161) using (152) and (160) and used

again that w1 = v0, w0 = v1.
Using the Fourier transform

1
(τ − iϵ)2 =

∫ [
−2πp Θ(p)e−pϵ

]
e−ipτ dp

2π
, (165)

we can write (164) as

(Fh0
N )(ξ, ζ) = −

∫
f̃N (p − ξ)f̃N (−p − ζ)p Θ(p)e−pϵ dp

2π
, (166)
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where
f̃N (q) ≡

∫
fN (τ)e−iqτ dτ (167)

is the Fourier transform of the test function, which is also a Schwartz function,
and we could interchange the integrals for ϵ > 0 because everything converges
absolutely. It follows that (163)∫

h0
N (τ, τ) dτ = −2 lim

δ→0+

∫ ∞

0
e−δξ2

∫
f̃N (p + ξ)f̃N (−p − ξ)p Θ(p)e−pϵ dp

2π

dξ

2π

= −2
∫ ∞

0

∫ ∞

0

∣∣f̃N (p + ξ)
∣∣2

p e−pϵ dp

2π

dξ

2π
, (168)

where we used that since fN ∈ S(R) is real-valued, we have f̃N (−p) = f̃∗
N (p), and

where we could take the limit inside the integral because everything converges
absolutely. Here we see that since p is positive, for a non-trivial quantum energy
inequality we need that ξ ≥ 0 [34], since otherwise the integrand would be
unbounded along the diagonal ξ = −p in the limit ϵ → 0. Shifting p → p − ξ,
we can then interchange the integrations and perform the integral over ξ, which
gives ∫

h0
N (τ, τ) dτ = −2

∫ ∞

0

∣∣f̃N (p)
∣∣2

∫ p

0
(p − ξ) e−(p−ξ)ϵ dξ

2π

dp

2π

= − 1
2π2

∫ ∞

0

∣∣f̃N (p)
∣∣2 1 − e−pϵ(1 + pϵ)

ϵ2 dp .

(169)

Using dominated convergence, we can then take the limit ϵ → 0 inside the
integral, since the integrand (apart from the test functions) is bounded by its
value at ϵ = 0 (which is p2/2). Using finally Parseval’s theorem for the Fourier
transform, we obtain∫

h0
N (τ, τ) dτ = − 1

4π2

∫ ∞

0

∣∣pf̃N (p)
∣∣2 dp = − 1

4π

∫ [
f ′

N (τ)
]2 dτ . (170)

Choosing now a sequence of test functions fN (τ) ≡ χN (τ)f(τ) with supp χN ⊂
[−N − 2, N + 2], χN (τ) = 1 for τ ∈ [−N, N ] and |χN (τ)|, |χ′

N (τ)| ≤ 1, we
have |f ′

N (τ)| ≤ |f(τ)| + |f ′(τ)| and can use dominated convergence to take the
limit N → ∞ inside the integral. Taking all together, from (151), (161), (162)
and (170) we thus obtain∫ [

− i
2f(τ)f(τ)

[
vµ(τ)vν(τ) + wµ(τ)wν(τ)

]
∂z

µ∂z′

ν H+(z, z′)
∣∣∣
z=z′=z(τ)

]
dτ

= − 1
24π

∫ [
6
[
f ′(τ)

]2 + f2(τ) [v̇1(τ)]2

1 + [v1(τ)]2

]
dτ , (171)

which depends on the test function f and the trajectory zµ(τ) and is clearly
negative, but bounded.

It remains to bound the remaining terms in (125), which contain Gk,ℓ,n,m and
the vertex operators V±β . For the first kind of terms, we use the definition of
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Gk,ℓ,n,m (41) and Gk,ℓ,n,m (124) as well as the definitions of the Feynman (32)
and Dyson parametrix (37) to obtain

Gk,ℓ,2(ℓ+m),m(x⃗; y⃗; z) − Gk,ℓ,2(ℓ+m),m(x⃗; y⃗; z)

=
ℓ∑

i=1

[
H+(xi, z) − HD(z, xi)

]
+

ℓ+m∑
i=ℓ+1

[
HF(xi, z) − H+(z, xi)

]

−
k−ℓ∑
j=1

[
H+(yj , z) − HD(z, yj)

]
−

ℓ+m∑
j=k−ℓ+1

[
HF(yj , z) − H+(z, yj)

]

=
ℓ+m∑
i=1

[
Gret(xi, z) − Gret(yi, z)

]
(172)

with the state-independent retarded propagator

Gret(x, y) ≡ Θ(x0 − y0)
[
H+(x, y) − H+(y, x)

]
. (173)

Replacing n → 2n and using the Kronecker δ for the sum over m, it thus follows
that the contribution of terms containing Gk,ℓ,n,m to (125) can be written as

β2

2 f(τ)f(τ ′)
[
vµ(τ)vν(τ ′) + wµ(τ)wν(τ ′)

]
×

∞∑
n=0

2n∑
k=0

min(k,n)∑
ℓ=max(0,k−n)

(−1)k+n

ℓ!(k − ℓ)!(n − ℓ)!(n − k + ℓ)!

∫
· · ·

∫
Ek,ℓ,2n,n−ℓ(x⃗; y⃗)

×
n∑

i=1
∂z

µ

[
Gret(xi, z) − Gret(yi, z)

]
∂z′

ν

[ ℓ∑
i=1

H+(xi, z′) +
n∑

i=ℓ+1
HF(xi, z′)

−
k−ℓ∑
j=1

H+(yj , z′) −
n∑

j=k−ℓ+1
HF(yj , z′) − i

n∑
i=1

W (xi, z′) + i
n∑

j=1
W (yj , z′)

]

×
n∏

i=1
g(xi)g(yi) d2xi d2yi , (174)

which contains state-dependent terms involving W and state-independent ones.
Since the state-dependent terms are independent of k and ℓ, and moreover sym-
metric under the interchange of the xi and yj among themselves, we can use
again the identity (150) to conclude that they vanish for all n > 0. However,
since they only appear starting from n = 1, they do not contribute at all, and
only state-independent terms remain. For those, we can take the limit τ ′ → τ
and bound them as in the previous section 3, and the bound is state-independent
due to our condition (11) on W . In the same way, we bound the contribution of
the vertex operators in (125), and the resulting bound is also state-independent.

Taking all together, we have shown that the first term in (125) is state-
dependent but positive, since it can be obtained as the limit of vanishing cutoff
Λ → 0 (146) of an alternative quasi-free state with positive definite two-point
function (144). For the terms involving the Hadamard parametrix H+(z, z′),
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the only non-vanishing contribution comes from the free theory (151), which we
have split into a part evaluated on a straight worldline and a part describing the
difference between this and the actual worldline. The second part has a finite
limit as τ ′ → τ (162), while for the first part we have used [34, Lemma 2.12] in
the form (118); taking both together we obtain a negative but state-independent
contribution (171) to the energy density. The remaining terms in (125) can be
simply bounded, noticing that the derivatives of the state-dependent part W
drop out. Since the only state dependence is then in the exponentials which
we estimate by 1 using our condition (11) on W , the bound on these terms is
state-independent. The sum of the bounds for these terms together with the
contribution (171) from the Hadamard parametrix then gives a lower bound
on the smeared energy density (16), which depends on the worldline z(τ), the
smearing f , β and the adiabatic cutoff g. Furthermore, this bound is non-trivial
since the state-dependent positive part is arbitrary and can thus certainly be
larger. ⊓⊔
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