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Standard real Hilbert subspaces

H complex Hilbert space and H C H a real
linear subspace.

Symplectic complement:
H={¢cH :3(n) =0 Vne H}.
H' = (iH)=+ (real orthogonal complement)
Hy C H, = H} D H5 .

A standard subspace H of 'H is a closed, real
linear subspace of ‘H which is both cyclic (H + iH =
H) and separating (H NiH = {0}). H is stan-
dard iff H' is standard.

H standard subspace — anti-linear operator
S=8yg:D(S) CH— H, where D(S) = H+:H,

S? = 1lp(g)- S is closed and densely defined.



Conversely, S densely defined, closed, anti-linear
involution on 'H gives

H={¢:5¢=¢} is astandard subspace

H «—— S Dbijection
Modular theory. Set
SH — JHA}{/Q

polar decomposition of § = Sy. Then Jg is
an anti-unitary involution A =5*S >0

AG'H=H, JyH=H

Borchers theorem (real subspace version)
H standard subspace, U a one-parameter group
with positive generator

U(s)HCH s>0.
Then:

A%U(S)Al_ft = U(e 27ts),
JyU(s)Jyg = U(—s), t,s € R.



Note: Setting K = U(1)H we have
AF'K = AFUQ)H = U™ A H
=U(P™YHCK, t>O0.

K C H is a half-sided modular inclusion.

About the proof (adapted from Florig). With
EcH ¢ eH
fu(z) = (AZE, U (2™ s) AT¢).

is analytic in Sy, ={z€C: 0<S z <3} (the
generator of U(t) is positive and Se2™%s > 0 for
z & 81/2).

V(t) = JU(—t)J satisfies the same assump-
tions then U because of JH = H’
fU (t _I_ %) — (A—l/QA—itg’ U(627Tt+i7TS)A—itAl/2£)

— (A_l/zA_itff, JV(€27TtS)A_?:t£)
— (A_it£/7 (JAl/Q)V(QQWtS)A_itg)
= (AT V(™) AT = fr (1)



(KMS and positivity of energy) analogously
V(t) = JU(—-t)J satisfies the same assump-
tions then U because of JH = H'

fv (t + %) = fu(t)

fu and fy glue to an entire bounded function,
thus constant.

Converse: Wiesbrock, Borchers, Araki-Zsido
theorem (real subspace version)

Let H, K be standard subspaces. Assume half-
sided modular inclusion:
ALK CK, t>0

Then {A% | A%} generates a unitary represen-
taion of the “ax+b" group with positive energy
dilation group = A;Iis/%

1
gen. of translations P = oy (log A —log Ag)
7



Conclusion:

positive energy rep. of “ax + b" group

)

Borchers pair (U, H)

)

half-sided modular inclusion of standard subspace

therefore, if U has no non-zero fixed vector,
(U, H) is unique up to multiplicity.

von Neumann algebras and real Hilbert sub-
spaces

M von Neumann algebra on H, €2 € 'H a cyclic
separating vector,
HM — MSCLQ

IS a standard subspace of H

Ay = A, I =gy,



In particular

Hyy = Hyyp

Borchers theorem (original for vN algebras)
M von Neumann algebra, €2 cyclic serating vec-
tor, U a one-parameter group with positive
generator with U(s)2 = 2 and

U(s)MU(—s) C M s> 0.
Then:

A%U(S)Aﬁt = U(e 27ts),
IpU(s)Ipy = U(—s), t,s € R.

Note: If €2 is the unique U-fixed vector then M
is a type [11; factor.



Wiesbrock, Borchers, Araki-Zsido theorem
(original for vN algebras)

Let M, N be vN algebras, {2 jointly cyclic and
separating vector. Assume half-sided modular
inclusion:

AVEINAY, C N, t>0.

Then {AY,, A%} generates a unitary represen-
taion of the “ax+b" group with positive energy

- A —is/2m
dilations = AM

1
gen. of translations P = oy (log Any—log Ayy)
T

Therefore Borchers triple & Wiesbrock triple.
How many Borchers triples there are?

Is is possible that U(s)MU(—s) N M = C for
s> 07



Mobius covariant nets of real Hilbert sub-
spaces

A local Mobbius covariant net of standard sub-
spaces A of real Hilbert subspaces on the in-
tervals of St is a map

I — H(I)
with

1. Isotony : If I1, I» are intervals and 11 C I,
then

H(I1) C H(Ip) .
2. MObius invariance: There is a unitary rep-
resentation U of Mob on ‘H such that

U(g)H(I) = H(gI) , g € Mob, I cT.

Here Mob ~ PSL(2,R) acts on S1 as usual.



3. Positivity of the energy : Lg >0

4. Cyclicity : the complex linear span of all spaces
H(I) is dense in 'H.

5. Locality : If I{ and I, are disjoint intervals
then

H(I1) C H(Ip)'

First consequences

Irreducibility: real lin.spanje7H(I) = H.

Reeh-Schlieder theorem: H(I) is a standard
subspace for every I.

Bisognano-Wichmann property. Tomita-Takesaki
modular operator Aj; and conjugation Jj; of



H(I), are

U(A(2nt)) = AT™ t € R, dilations
U(ry) = Jg reflection

Ar.(D)z = elz.x € R, I ~ RT upper semi-
(A, () : 1
circle)

Haag duality: H(I) = H(I') (I'=8S1\1).

Factoriality: H(I)NH(I) =0

Additivity: I C U;l; = H(I) C real lin.span;H(I;).

Modular theory and representations of SL(2,R)
(Brunetti, Guido, L.)

U a unitary, positive energy representation of
Mob on H and J anti-unitary involution on 'H
S.t.

JU(g)J = U(rgr), g€ Mob



where r : z — z reflection on S! w.r.t. the
upper semicircle I;. Then define

Jr=U(g9)JU(g)"
where g € Mob maps I; onto I.
AY = U(AN(=2nt)), teR
namely —5-log A generator of dilations of I,

S] p— J]A}/2

iIs a densely defined, antilinear, closed involu-

tion on H.

H(I) standard subspace associated with Sy

!

MoObius covariant local net of real Hilbert spaces

A +hsm factorization of real subspaces is a
triple Kq, K1, Ko, where {K;,7 € Z3} is a set of



standard subspaces s.t. K; C K, is a &hsm
inclusion.

Factorization

)

Local Mobius covariant net of real Hilbert spaces

)

Positive energy representation of SL(2,R)/{1,—-1}

Note: Irr. positive energy rep. of SL(2,R)/{1,—1}
are parametrized by N



Mobius covariant nets of vN algebras. A
(local) Mébius covariant net A on St is a map

IeZT— A(I) C B(H)

7 = family of proper intervals of S1, that sat-
isfies:

A. Isotony. I C I, =— A(I1) C A(I)
B. Locality. 1Nl = @ — [A(l1), A(I>)] = {0}

C. Mobbius covariance. 3 unitary rep. U of the
Mobius group Mob on H such that

U(g)A(IU(g)* = A(gl), g €& Mob, Ic.

D. Positivity of the energy. Generator Lg of
rotation subgroup of U (conformal Hamilto-
nian) is positive.

E. Existence of the vacuum. d! U-invariant
vector Q2 € ‘H (vacuum vector), and 2 is cyclic



for the von Neumann algebra Vo7 A(I) and
unique U-invariant.

First consequences
Irreducibility: \/jez A1) = B(H).

Reeh-Schlieder theorem: <2 is cyclic and sepa-
rating for each A([1).

Bisognano-Wichmann property: Tomita-TakesakKi
modular operator Aj; and conjugation Jj; of
(A(I),2), are

UN(27t)) = AY, ¢t € R, dilations
U(ry) = Jg reflection

(Guido-L., Frolich-Gabbiani)
Haag duality: A(I) = A(I")

Factoriality: A([I) is IlI;-factor (or A1) = C).



Additivity: I Cc U;I; =— A(l) C V;A(1;) (Fre-
denhagen, Jorss).

- Net of factors on H — Net of standard sub-
spaces (not one-to-one) on H

- Net of standard subspaces on H — Net of
factors on on e’ (second quantization)

A(D) ={W(h): he HI)Y
Further selection properties.

e Split property. A is split if the von Neumann
algebra

A(l1) vV A(I2) ~ A(I1) ® A(I2)

(natural isomorphism) if Iy NI, = &.

- Split is a property of the net (not of U).



- Split is crucial, e.g. for local charges, com-
plete rationality, hypefinetness, classification...

e [race class condition.

Tr(e ) < 0o, Vt > 0

- Trace class condition is standard in CFT

- Trace class condition — split

- Trace class condition can be refined to /og-
ellipticity

1
log Tr(e t0) ~ t_a(ao +ait+---) ast—0T

a = 1 (Kawahigashi,L.)

- Trace class is a property of U (not of the
net).

e Buchholz-Wichmann nuclearity:

PBPWV(B) iz € A(T) — e P2 e H




is nuclear, I interval of R, 8 > 0. P translation
generator (Hamiltonian).

Recall: A : X — Y is nuclear if 4 sequences
fr € X*and yp € Y s.t. i || fxll llykl| < oo and

Az =3 fr(@)y -
k

A1 = inf Xk 1 fell Hykll-



- BW-nuclearity is a physical property (Haag-
Swieca): essentially finately many localized states
in a finite volume.

- BW-nuclearity is a property of the full Mobius
covariant net.

- Can be refined with [|®BW(B)||; < e™/8" as
B — 017 and — KMS states for translations
(Buchholz-Junglas).

Derive BW-nuclearity from the trace class
condition (Buchholz, D'Antoni, L.)

e Modular nuclearity

M von Neumann algebra, €2 cyclic separating
unit vector. Set

L®(M) = M, L?(M) = H, LY (M) = M, .



Then we have the embeddings

x—(x2,J - 2)
CDM

¢M2 CD

Lee(M)

L(M)

r— A0 §—>(€7J'Q)

L?(M)
Now let N C M be an inclusion of vN algebras
with cyclic and separating unit vector (2.

LP9-nuclearity if CD ¢/ N is @ nuclear operator.

LOO’Q-nucIearity was called modular nuclearity,
i.e.

ch

oo,2|

NizEN— AV

IS nuclear.

As ¢l = oL olf 5, we have

00,2

M M M M
[P 1Nl S [Pl [P 2lnllt S |[Poo2lN]1



Thus

Modular nuclearity = L1 — nuclearity.

indeed &1 1|y = @0 - ®l 5|y and [|d5]| <1

SO ||Cboo,1|N||1 < ||Cboo,2|N||1' (A certain con-
verse holds) .

- If N or M is a factor and ®J! |y is nuclear
then N C M is a split inclusion (N v M’ ~
N M.

Short proof. By definition cDM 1|N nuclear means:
3 sequences of elements ¢, € N* and vy €
M's (= LY(M)) such that S [legll [l < oo
and

w(nm') = Zgok(n)wk(m’) . neN,meM .
k

where w = (- Q,Q). As &M |y is normal the
Y can be chosen normal ’(take the normal
part). Thus the state w on N ® M’ extends
to N ® M’ and this gives the split property.



Consider now the commutative diagram

<1>£,1|N

1/4 \ —1/4

Tyn = P3|y, L2-nuclearity condition (or
L?2-nuclearity) means that

T Nll1 < o0

- L?-nuclearity = modular nuclearity,

indeed ||®22 5| nll1 < [T, wll1 because
¢%,2|N =Tp N - <l>]ovo,2 and ||¢JOVO,2|| < 1.

L2-Nuclearity. Let H ¢ H be an inclusion of
standard subspaces. Set

1/4 A —1/4



then ||Tx || < 1. The inclusion is nuclear if
T ¢ is @ nuclear (i.e. trace class) operator.

U unitary, positive energy representation of Mob,
H(I) the associated net of standard subspaces.
U satisfies L2 nuclearity if H(I) ¢ H(I) is nu-
clear if I cC I.

SL(2,R) identities.

Formula 0 (Schroer-Wiesbrock)

U positive energy unitary Mob rep., Vs > O:

_isA—1/4 _
Ai“AQZ‘SAl /4 _ —2msLo

A1 = AIl’ Ao = AIQ, with Iy, 1> upper and
right semicircles.

About the proof. Use of double interpretation
of A1, A>: modular (analyticity) and SL(2,R)
(Lie algebra relations)



Formula 1 U positive energy unitary represen-
tation:

. __ _—sLg 28/27'('

s = ¢(I,I) is the inner distance (if I = (—1,1)
and I = (—e%,e®) on the real line, then
¢(I,I) = s) thus

—sL
| T7 111 = lle”"™0[1
About the proof.

—27T8LO A1/4A5iSAI1/4 —

1/4 —18 1/4 18 —18 __ —18
AYTATE(ALTTAR) A =Ty A5
Formula 2
Ty — e—a’P}G—ane—iaPIeia’Pj’- .
) a/,a

Iy, = T/_a,TaI with a,a’ > 0.

a,

e—2sLo — — tanh(%)Pe— sinh(s)P’e— tanh(3)P




therefore

S
e—2sLo < o—2tanh(3)P

. . . . . / .
in particular e Lo = gt il

About the proof. Consider I = (0,00), I =
(t,00), then
_ Al/a -1/
= (a*vma; MU
_ P itP
where we have used. the Borczhers commutation
relation AP AT = (e NP Any T cc T
IS obtain by iteration the above, get a formula
and compare with formula 1.

Formula 3
e~ taNCTNUP AZA < 1, 0<A<1/4.
with dy the usual lenght. Thus

e—2tan(2mNdP o A2\




SO we have

2 pl
P
c—2d7P ~ A }/4 < odr

Modular nuclearity and L2-nuclearity

L2-nuclearity implies modular nuclearity and

1/4
1AY* Byl < ITq gl

Comparison of nuclearity conditions

Let H be a MObius covariant net of real Hilbert
subspaces of a Hilbert space 'H. Consider the
following nuclearity conditions for H.

Trace class condition: Tr(e $L0) < oo, s > O
L2-nuclearity: ||T5 ;||1 < oo, VI CC I,

Modular nuclearity: =7 ;: & € H(I) — A-Il-/4§ S

‘H is nuclear VI CC I:



Buchholz-Wichmann nuclearity: ®BW(s) : ¢ €
H(I) — e %P¢ € H is nuclear, I interval of R,

s > 0 (P the generator of translations);

Conformal nuclearity.: Wi(s) : &€ € H(I) —
e—sLo¢ € ‘H is nuclear, I interval of S1, s > 0.

We shall show the following chain of implica-
tions:

Trace class condition

)

L2 — nuclearity

U

Modular nuclearity

U

Buchholz-Wichmann nuclearity

U

Conformal nuclearity

Where all the conditions can be understood for
a specific value of the parameter, that will be



determined, or for all values in the parameter
range.

We have already discussed the implications “Trace
class condition & L2—nuclearity = Modular nu-
Clearity" .

Modular nuclearity = BW-nuclearity

We have

B —_
[PV (dr)llL < I=7,10]12
where dj is the length of I on R.

BW-nuclearity = Conformal nuclearity

By formula 2 there exists a bounded opera-
tor B with norm ||B|| < 1 such that e=5l0 =
Be~ tanN()H therefore

W;(s) = BoBW(tanh(s/2))

1Wi(s)]1 < [|PPWV(tanh(s/2))]]1.



Consequences

e Distal split property. If Tr(e 5L0) < ~o for
a fixes s > 0, then A(I) C A(l) is split if
I c I and ¢(I,I) > s e.g free probability nets
(D'Antoni, Radulescu, L.).

e Constructing KMS states. A|p restriction of
A to R ~ 8t {-1}, Ag the quasi-local C*-
algebra. i.e. the norm closure of UjA(I) as
I varies in the bounded intervals of R. Let
20 C Ag the C*-algebras of elements with norm
continuous orbit, namely

A= {X € Ao : lim|Im(X) - X|| =0}
7 translation automorphism group.
Thm. If the trace class condition holds for A

with the asymptotic bound

1
Tr(e_SLO) < econst.s—a7 s —s O—|—



for some o > 0, then the BW-nuclearity holds
with m = n = «.

If the trace class condition holds with log-ellipticity
(above asymptotics) then for every 3 > 0 there
exists a translation -KMS state on 2.





