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Rudolph Haag has proposed many years ago that it should be
possible–and useful–to think of quantum field theory as being
defined by some sort of algebraic structure. This viewpoint has
been confirmed, and expanded, since then by many investigations,
bringing to light, and making contact with, not least, several
interesting mathematical structures. It is fair to say that his
ideas/investigations have laid the foundation to a “school” of
thought.
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Different attitudes towards ‘schools’ and ‘dogmas’

1 “Instruct your children to follow all our laws and teachings.”
[Moses, Dtn 32, 46-47]

2 “My doctrine is not a doctrine but just a vision. I have not
given you any set rules, nor system.” [Lord Gautama Siddharta Buddha (?) or

Bhagwan Shri Rajneesh (?)]

3 “I think that a man’s duty is to find where the truth is, or, if
he cannot, at least take the best possible human doctrine and
hardest to prove ...” [Plato]; Attidude of this talk.
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I would like to suggest a general approach quantizing field theories
based on the method of “deformation quantization”, especially a
construction due to Fedosov.

‘Traditional method of quantization’

1 Kinematical level: Start with phase space S , such as
S = {(x , p) ∈ R2}, together with Poisson bracket, such as
{q, p} = 1. Quantization: Promote q, p, and more general
observables F (q, p) to operators on Hilbert space L2(R, dq)

q → q̂ , p → p̂ =
~
i

d

dx
, F (q, p)→ F̂ =???

2 Dynamical level: In particular, promote classical Hamiltonian
H to self-adjoint operator, Ĥ, and define time evolution as

F̂ (t) = eitĤ F̂ e−itĤ .

But not all phase spaces S admit global coordinates. What are
reasonable rules for defining F̂ (‘ordering ambiguity’)?
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Variant of this programme: ‘deformation quantization’. More
‘modest’, because one constructs the observables in a ‘weaker
sense’. One assumes to be given in this programme a phase space
S equipped with an associative Poisson bracket { . , . }, which
may or may not come from a ‘symplectic form’ σ (above example:
σ = dq ∧ dp).

‘Deformation quantization’

1 C∞(S ) already is a Poisson algebra under anti-symmetric
bracket {F ,G}.

2 Introduce an associative product
?~ : C∞(S )⊗ C∞(S )→ C∞(S ) with properties

1) F?~G = FG +O(~) , 2) 1
i~(F?~G−G?~F ) = {F ,G}+O(~)

(+ technical properties.)

No Hilbert space, no ordering ambiguity (we do not change the
functions F , but the product).
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It is a well-defined mathematical question whether all
(finite-dimensional) Poisson manifolds (S , { . , . }) admit a
deformation quantization.

1) Simplest case: In the case S = R2n with

{F ,G} =
n∑

i=1

( ∂F∂pi
∂G
∂qi
− ∂F

∂qi
∂G
∂pi

)

a closed expression can be given for the ?~-product (‘Moyal
quantization’)

F ?~ G =
∞∑

N=0

(i~)N

N!
σµ1ν1 · · ·σµNνN∂µ1 . . . ∂µN F ∂ν1 . . . ∂νN G .

Here σ = σµνdxµ ∧ dxν ≡ dqi ∧ dpi in terms of global
coordinates (xµ) = (qi , pj) on R2n.
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2) Symplectic case: In this case Poisson bracket comes from a
closed, non-degenerate, 2-form σ on S . Defined by

{F ,G} = σ−1(dF , dG ) ,

which generalizes formula in the ‘simplest case’. Locally same
as ‘simplest case’ (Darboux coordinates), but not necessarily
globally. Solution [Fedosov], ... → This talk.

3) General case: Poisson bracket does not come from a
non-degenerate symplectic form. Solution given by [Kontsevich]

(generalization: “formality conjecture”). This will not be
needed in this talk.

In ‘simplest case’ 1), ‘non-perturbative’ solution to deformation
problem is also available, similarly in case 2) for compact Kähler
manifolds (S , σ, g), similarly 3). In general, only “formal
solution”–i.e. formal power series in ~–available.
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Deformation quantization in QFT

We would like to apply the philosophy of deformation quantization
to field theories arising from a classical Lagrangian. ⇒ ‘Symplectic
case’, but infinite dimensional S ! The simplest, but very
instructive, example is linear KG-theory (on Minkowski space)

(�−m2)u = 0 .

In this case, S , the underlying symplectic space is linear

S = {smooth sol. u, compact supp. on Σ}
= {pairs (q, p) ∈ C∞0 × C∞0 where q = u|Σ, p = ∂0u|Σ}

The symplectic form σ : S ×S → R is:

σ(u1, u2) =

∫
Σ

(q1p2 − p1q2) d3x .
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The correct deformation quantization (⇔ traditional quantization)
is as follows [Dütsch & Fredenhagen]:

1 Choose ‘observables’ [replacing C∞(S )] as F ’s of form

F =

∫
f (x1, . . . , xn)ϕ(x1) · · ·ϕ(xn) ,

ϕ(x)[u] ≡ u(x) is the evaluation functional on S , and f is
any distribution on (R4)n having WF(f ) ∩ (V n

+ ∪ V n
−) = ∅.

2 ?~-product:

F ?~ G =
∞∑
N=0

~N

N!

∫
W (x1, y1) · · ·W (xN , yN )

δN

δϕ(x1)...δϕ(xn)
F

δN

δϕ(y1)...δϕ(yn)
G ,

W = ‘Wightman function’=‘2-pt function’.



Idea of Deformation Quantization Fedosov quantization Relationship with K -theory, cyclic cohomology

Explicitly

W (x , y) =

∫
V+

d4p δ4(p2 −m2) eip(x−y) .

1 Relation to ‘traditional quantization’: It is a version of
traditional quantization if we replace

F → F̂ =

∫
f (x1, . . . , xn) : ϕ̂(x1) · · · ϕ̂(xn) :

where ϕ̂(x) = standard field operator (creation + annihilation
operators), : := normal ordering. Then ?~-product = Wick’s
theorem.

2 Relation to ‘simplest case’: Note that S is linear. Formally
equivalent to Moyal quantization if we write
W jk = iσjk + g jk , and replace in formula for ?~-product

i~σkl → ~(iσkl + gkl) .

Note: gkl is a metric on S (really T ∗S ), and Jk
l = gljσ

jk is
a complex structure.
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How can we generalize this methods to more interesting theories
like

�φ− V ′(φ) = 0 ?

Let S be the space of solutions. Given φ ∈ S , consider solution
to the linearized equations

(�− V ′′(φ))u = 0

around φ as an element in the tangent space TφS . For each
background solution define a corresponding 2-point function
Wφ(x , y) having WF(Wφ) ⊂ V+ × V−, which defines a quasi-free,
pure state for the linearized theory in the background. Let

Wφ = {algebra of non-lin. functions F : TφS → R, under ?~}

Note that this defines a bundle

W =
⋃
φ∈S

Wφ ,

of *-algebras over S , which is itself an algebra!
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Further structure on S :

1 Decompose into real and imaginary parts Wφ = i∆φ + Gφ,
Then ∆φ is causal propagator for linear operator �− V ′′(φ).

2 The object

∆φ =

∫
∆φ(x , y) δ

δφ(x) ⊗
δ

δφ(y) ∈ TφS ∧ TφS

defines a non-degenerate skew symmetric tensor field on S
(= inverse symplectic form).

3 The similar object defined from Gφ defines a Riemannian
metric on S .

4 The composition of ∆−1 = σ and G gives a tensor field J of
type (1, 1) on S , which is an almost complex structure.

5 Using G , we can define (a) the Levi-Civita connection ∇, (b)
Riemann tensor, R.



Idea of Deformation Quantization Fedosov quantization Relationship with K -theory, cyclic cohomology

Aim:

The aim is to define a ?~-product on a suitable set of observables
F ∈ Func(S ) which should (at least) contain “composite fields”
of the type

F (φ) =

∫
f (x)

∏
∂wiφ(x) , f ∈ C∞0 (R4) ,

The ?~-product should be defined (at least) in sense of formal
power series.

Already know: Sect(W ) is algebra under “fibrewise” product

(F ·~ G )(φ) ≡ Fφ ?~ Gφ ,

since Fφ ∈ Wφ for any φ ∈ S , and since Wφ is already an algebra
(the “free field Wick polynomial algebra” of the linearized theory
around φ) with product ?~.
But: This does not give desired deformation quantization of
Func(S ), since Sect(S ,W ) is a different (much larger) space!
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How to relate Func(S ) with Sect(S ,W )?

Basic construction of ?~-product

1 Define a flat connection DF = ∇F + [A,F ]·~ for
F ∈ Sect(W ), where A is a suitable W -valued 1-form on S
satisfying ∇A + [A,A]·~ = 0.

2 Set up a one-one correspondence τ : Func(S )→ Sect0(W )
between smooth functions and flat sections.

3 Define (F ?~ G )(φ) := τ−1(τ(F ) ·~ τ(G )).

Note that it is not clear that such a flat connection A exists, nor
how to define it, but this works in finite dimensions [Fedosov],

[Schlichenmacher et al.], [Waldmann],...

Many new issues due to infinite-dimensional nature of S in field
theory!
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First main theorem

The first main result we look for is:

Theorem 1

(approximate version) There exists a Fedosov connection A as a
formal power series in ~ with the property

order ~n part of A = pn(∇n−2R,∇n−1J) .

pn is a polynomial. There is a one-one correspondence
Func(S )→ Sect0(W ). F̂ = τ(F ) has the form of a “perturbation
series”

F̂ = F0 + ~F1 + ~2F2 + . . . ,

with F0 = F · idW .

This hoped-for theorem would give the desired “deformation
quantization”: Replace F by F̂ and take the ·~ product in the
bundle W .
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“Fedosov-” vs “ordinary” perturbation theory

Let F ∈ Func(S ) be polynomial, local function of the field φ,

F (x) = F [φ(x), ∂φ(x), . . . , ∂nφ(x)] ≡ F [φ(x)] ,

“Conventional” perturbation theory

Fock-space formula for interacting field for F :

=
∞∑
N=0

(i/~)N
∫
x0>y0

1
>···>y0

N

[. . . [: F [ϕ̂(x)] :, : V [ϕ̂(y1)] :], . . . , : V [ϕ̂(xN )] :] ,

= operator on Fock-space = “retarded product”.

This formula is sometimes called “Haag’s series” [Haag], [Fredenhagen &

Duetsch].) This formula, like other formulas in perturbation theory,
requires renormalization. If we take a VEV, we obtain (formally)
ordinary “Gell-Mann-Low” formula.
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In order to relate “conventional” and “Fedosov-type” construction,
we re-interprete the conventional perturbative formula as an
element of the algebra bundle W . Recall that for φ ∈ S , one can
define a “retarded product” as a map (for each N ∈ N0)

Rφ : Func(S )⊗
N∨

Func(C∞(R4))→ Wφ

denoted by Rφ(F ,G⊗N). Retarded products are explicitly
constructed using Epstein-Glaser renormalization in [Fredenhagen & Duetsch],

[Hollands & Wald].
Remark: Actually Func has to be replaced by an “extension”, i.e.
the cohomology of a certain chain complex

Func~(S ) := H∗(s~ : Polyvecn+1(S )→ Polyvecn(S )) ,

where s~ = s0 + ~s1 + ~2s2 + ... and s0 = ‘Koszul-Tate differential’.
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Fedosov vs. traditional perturbation theory

Using ‘retarded products’, define map
ρ : Func~(S )→ Sect(S ,W ) by [with Fφ ≡ F (φ+ ϕ)]:

ρ(F ) =
∞∑

N=0

(i/~)N

N!
Rφ

(
Fφ; (

∫
V d4x)⊗N

)
Then it is hoped for that the following theorem can be proved

Theorem 2

Let τ : Func~(S )→ Sect0(S ,W ) be the map which associates
with an F a flat section F̂ = τ(F ), 0 = ∇F̂ + [A, F̂ ]·~ . Then there
there exists a unitary section U ∈ Sect(S ,W ) (meaning
U ·~ U∗ = id) such that

ρ(F ) = U ·~ τ(F ) ·~ U∗

i.e. Fedosov quantization (i.e. τ) and ordinary perturbation theory
(i.e. ρ) are equivalent.

We currently have no proof of this ‘theorem’, but we have
non-trivial evidence.
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For theories with a richer symmetry structure (supersymmetric field
theories), the Fedosov approach makes natural several very
interesting mathematical constructions. E.g. N = 4
Super-Yang-Mills theory:

I = trace

{
− 1

2
F 2 +

1

4
(DG +)2 +

1

4
(DG−)2

+
e2

32
[G +,G +] +

e2

32
[G−,G−] +

e2

16
[G +,G−]

+iψ̄Dψ + ie ψ̄[ψ,G−] + ie ψ̄Γ[ψ,G +]

}
+ BRST closed

All fields in adjoint rep some simple Lie-algebra g. A classical
solution φ = (A,G +,G−) is by definition a solution with vanishing
fermion fields ψ. Analog of algebra Wφ:

1 Wφ is tensor product of bosonic and fermionic fields

2 Wφ contains additional “ghost fields”

3 Wφ has graded derivation qφ (BRST) with qφ ◦ qφ = 0
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Additionally, assume φ is “supersymmetric” or “BPS”. This means
that some of supersymmetry variations of the full theory
annihilates φ.

Example:

Certain kinds of classical “monopole configurations” e.g. [E. Weinberg].
Such solutions span a finite-dimensional smooth submanifold
Mk ⊂ S of dimension k (related to number of monopoles)

⇒ The linearized theory around φ also has a corresponding
supersymmetry!

1 If φ supersymmetric, then Wφ has graded derivation Qφ such
that Qφ ◦ qφ + qφ ◦ Qφ = 0, and such that Q2

φ = generator of
time-translations in linearized theory.

2 We can assume ∇Qφ + [Aφ,Qφ]·~ = 0, where A is Fedosov
connection.
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Now consider GNS-representation of Wφ of Hφ induced by
quasifree state ωφ (associated with Wightman function
W (φ, x , y)), with vacuum vector Ωφ annihilated by Qφ. This gives
a bundle of Hilbert spaces

H =
⋃

φ∈Mk

Hφ

Let Z be the following operator:

Z : Ω∗(Mk ; H)→ Ω∗(Mk ; H) , Z := γD + iQ ,

where D = ∇+ A Fedosov connection, γ even-odd automorphism.

Can define cocycle in the “(B, b)”-complex [Cuntz, Connes, Quillen] in the
algebra AD = Sect0(Mk ,W ):

Φω(a0, . . . , a2n) :=

∫
0<t1<...<t2n<1

dt1 . . . dt2n ·

·
∫

Mk

ω ∧ trace
(
γ a0[Z , a1(t1))][Z , a2(t2)γ ] · · · [Z , a2n(t2n)γ ] eZ

2)

for any closed C-valued form ω.
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This construction can give rise to:

1 A Chern-type character Ch : K∗(AD)→ Z by a general
construction of Connes

2 Let Ch(H) be the ordinary Chern character of the bundle H,
and let Â(Mk) denote the Â-roof genus. The connection
between the character map Ch(HE ,∇+∇∗, γE ) : K0(A)→ Z
derived from spectral triple HE := Ω∗(Mk ,H), and cocycle
Φω is that

Ch(HE ,DE , γE )(e) = trace ◦ Φω(e, e, ..., e + 1/2) ,

with
ω = Â(Mk) ∧ Ch(H) .
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Conclusions

In this talk I have outlined the general idea for a new approach to
the construction of quantum field theories from classical field
theories. The output of the construction is an algebra of
observables, as Haag proposed. This algebra has the structure of a
space of flat sections in a bundle of algebras over the space of
classical solutions. Each fibre is a canonical, CCR/CAR type
algebra, corresponding to the linearized theory around the given
classical solution. The non-trivial dynamical content is encoded in
the flatness condition of the sections. Interesting connections
with other parts of mathematics such as cyclic cohmology,
topology of moduli spaces.
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