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Particle creation by

black holes, etc Historical development
Hawking, Fulling, Unruh, Wald of QFT in CST, outline
1973..78
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Simple model: linear scalar field

o (M, g) 4-dim, globally hyperbolic spacetime
o K = (V*V, + m?) scalar Klein-Gordon operator on (M, g)

e (., advanced/retarded fundamental solutions (Green-functions)

for Ix

o/ (M, g) is defined as the star-algebra with unit 1 and generated
b
(I)y(f) f € Ci (M), with relations
f—P(f) is linear
o(f) = o(F)
O(Kf) = 0
[D(f1), (f2)] = U(Gy(f1. f2) = G-(f1, f2))1
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Hawking Effect: An observer kept (by acceleration) at constant
distance to the black hole will register a thermal equilibrium state
(at large times) having the temperature

ﬁ 3
THawking = ﬁ, M = mass of black hole,

if the quantum field state at early times (before the stellar

collapse to a black hole) was a vacuum state.

singularity -

2 ,’J" 2 N Iltin]ﬂ”

distance from center of star
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The Fulling-Unruh Effect: An observer moving with constant
acceleration registers the vacuum state — defined with respect
to a Lorentz frame — as a thermal equilibrium state having the

temperature

ha

— ———, a = proper acceleration

L

- AT
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Hawking Effect and analogy to the Fulling-Unruh Effect
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Interlude: Hawking effect and Bisognano-Wichmann

Let f — F(f) be a Wightman quantum field
on Minkowski spacetime
o (W) = vN alg generated by F(f), suppf C W
S (W) — (W), S(AQ) = A
S = JAY? Tomita-Takesaki

Bisognano-Wichmann (1973)

J = PCT
A" = U(Aam) = (Q].]9) is KMS for U(A,)
(cosh(’r) sinh(7) 0 0

) sinh(7) cosh(r) 0 0
UiA) = 0 | 0 | 10
\ 0 0 01
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U(.) = repr of Poincaré grp,

spectrum condition
() = vacuum vector

W = right wedge region

time

edge —~

Generalized to
static black-holes by

Sewell (1982),

Haag-Narnhofer-Stein
(1984)

Summers-R.V. (1996)
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Some lessons from “particle creation” effects

Concepts of “particle” or “ground state” in curved spacetime are

strongly dependent on certain global or asymptotic “reference”
systems,

i.e. "observers” in the sense of distinguished states or observables.

The (local) interpretation of physical processes in generic curved
spacetimes should not be based on the concept of “particle” or

“vacuum” but on (relations between) local field quantities, i.e.
local observables.

Of special interest is {T;m ($)> ’

the expectation value of the stress- energy-tensor in a physical state,

since it appears on the right hand side of the the semiclassical Einstein
equations,

1 3G

Ruv(2) = 29w (2)R(z) = ——= (T (z) + (T (2)))




Stress-Energy and Hadamard states

What properties should {T;m(m)} have?

Wald 1977:

x {Tw(m)} should depend covariantly on the spacetime metric
* divergence-free: V‘u’ {Tw(m)} =0
Theorem:
(1) The difference of different descriptions for defining {TmJ (m)}
depends locally on spacetime metric and is divergence-free
(2) The point-splitting + Hadamard singularity subtraction yields a defn

for {Tw(m)} with the required properties Rainer Verch - AQFT 50



Simple model: linear scalar field

o (M, g) 4-dim, globally hyperbolic spacetime
o K = (V*V, + m?) scalar Klein-Gordon operator on (M, g)

e (., advanced/retarded fundamental solutions (Green-functions)

for Ix

o/ (M, g) is defined as the star-algebra with unit 1 and generated
by
O(f), [ e Cy- (M), with relations

f— ®(f) is linear

o) = ()
OKf) = 0

P(f1), P(f2)] = ((GL(f1, f2) = G_(f1, f2))1

C* version by Dimock (1980)
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For astate w=(.),: & (M,g) —C

o (Hy Dy, e,y 1)
Wightman-GNS-representation

. (I)w(f) — ﬁu.}((I)(f))'

simply @(f) = ®,(f) in selected repr smooth,
metric-dependent
part
Hadamard condition on 2-point correlation: l
{T(m* .9')

(Y| @ ()P (y)|y) =

+ V(z,y)n(o(z. y)) + W(z, y)

o(x,y

o(x,y) = squared geodesic distance between = and y
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For the stress-energy-tensor of a classical field p(x),
PHI»’(:I:*. Y, v’r* VU)

T:uj‘j(:lj) — ?:1;1_1)1:1{‘ ‘Pptb'(ﬁ:! y" vﬂf.‘-‘ vy) [kp(‘r)klp(y)} is a PDE

Consequently, define

metric-dependent

<11'TI"‘TL?;H(£)M”> - ;I;EE pﬂv(iﬁa Y, V. Vy)[@“i)(l)@(t})‘t) " singular part
— |im PW(:I?-, U, VI, Vy) [I’[’(’L :U)]

y—

o (T (@)l) = WITS (0)]6) - Qw)gun(0)
is divergence-free, with

()(z) state-independent, constructed locally from the spacetime
metric
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Hadamard states = states with 2-point correlation of Hadamard form

Since 1978, a better understanding was successively reached
how to characterize the relevant Hilbert space representations of
quantum fields in curved spacetimes (for linear quantum fields):

e Hadamard states (resp., Hadamard representations) allow a
systematic definition of (T, (x)) (Wald 1978)

e Hawking effect appears in a natural manner in Hadamard
representations (Haag, Narnhofer u. Stein 1984; Fredenhagen
u. Haag 1990; Kay u. Wald 1991)

e Hadamard states define a unique Hilbert space representation
(Verch 1994)
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Microlocal Spectrum Condition (1 SC)

An important step was the introduction of the

microlocal spectrum condition by Radzikowski 1996; Brunetti,
Fredenhagen and Kohler 1996.

The microlocal spectrum condition for a state vector |¢)) requires
that

(XY (W)W ~ oy ¥ N ([k| — o0),

if kK € T" M is not contained in the (dual) forward light cone of

x € M, with test-fuction x concentrated around x.

(It says that W F'(f +— ®(f)|v)) is contained in the forward
light cone bundle)

Iltimell

™M
X
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The microlocal spectrum condition was shown to be equivalent
to the Hadamard condition by Radzikowski 1996:

(Y| P(x)P(y)|y) is Hadamard <= |2)) fulfills pSC

The pSC is more general than the Hadamard condition since it
can be generalized to nonlinear quantum fields,

by imposing fall-off conditions on expressions of the form

(1®) (k1) - - - (Oxen®) (k) [90)

for |ki| 4+ -- -+ |k,| — oo outside of certain conic sets

The uSC can be seen as a short distance/high energy remnant
of the spectrum condition in combination with the equivalence
principle

Rainer Verch - AQFT 50



Rainer Verch - AQFT 50

Quantum Energy Inequalities (QEIs)

In 1978, L. Ford introduced another condition for “admissible”
Hilbert space representations of quantum fields on curved
spacetimes:

They should satisfy quantum energy inequalities:
O for every timelike curve -~
O for every positive C°° weight function f

there should be a bound of the form

11|1j>11 /d’T F(T){(|Too(T)|p) = —cy g > —o0
(1) ~

Interpretation: When averaging over finite time, it is impossible
to extract an arbitrary amount of energy from any state.



Note: The classical pointwise weak energy energy condition
Too(x) = T, (x)t"t” > 0 for all timelike vectors ¢t at = € M

is violated in quantum field theory (also on Minkowski spacetime);
it holds that

II\li}Il (Y| Too(x)|p) = —o0 |

Thus, the QEls impose a nontrivial constraint on Hilbert space

representations to be admissible.

Relations between the conditions:

For Hilbert space representations of linear quantum fields (Klein-
Gordon, Dirac, Maxwell) on generic spacetime manifolds, it could
be shown (Fewster 2000; Fewster and Verch 2001; Fewster and
Pfenning 2003) that

nSC — QEIs
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For linear quantum fields on static spacetimes, it was found that
the following conditions on their Hilbert space representations are
equivalent (Fewster and Verch 2002):

S C  “microscopic condition”
<— QEIs "mesoscopic condition”
<= existence of thermal equilibrium states (passive states)

il . " "
Macroscopic condition

This shows that ©SC and QEls can be viewed as equivalent
characterizations of quantum field states (or Hilbert space
representations) which are dynamically stable — they also coincide
with the usual characterizations of the “correct” Hilbert space
representations when the spacetime admits time-symmetries.
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Ruling out "Designer Spacetimes”

Since energy densities of quantum fields (in physical states) need not be
positive, there is the possibility to obtain spacetimes with pathological
causal behaviour (e.g. closed timelike curves, wormholes...) as solutions
to the semiclassical Einstein equations.

(And this could be hinting at very unusual effects in quantum gravity.)

But microlocal spectrum condition and QEIs put strong limits to this
a priori possibility.

& time machines (Kay, Radzikowski and Wald 1997)

For quantum field theories in Hilbert space representations
fulfilling £SC and existence of a causal dynamical law, spacetimes
with Cauchy-horizons are excluded as solutions to the equations

of semiclassical gravity.
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& warp drive (Pfenning and Ford 1997)

For quantum fields in Hilbert space representations fulfilling QEls,
extreme amounts of negative energy (comparable to the total
energy of the luminous universe) would have to be concentrated
In microscopic domains of space.

& wormbholes (Ford and Roman 1995)

Again, for quantum fields in Hilbert space representations
fulfilling QEls, extreme amounts of negative energy (comparable
to the total energy of the luminous universe) would have to
be concentrated in microscopic domains of space in order to
sustain macroscopic wormholes. (The situation for microscopic
wormholes is not completely clarified.)

Recent progress on this question by Fewster-Roman 2005,
Fewster-Smith 2008
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Local covariant QFT (R.V. 2001, Hollands-Wald 2001, Brunetti-Fredenhagen-R.V. 2003)
(1) To every spacetime (M, g), a quantum field is assigned:

(M, g) — Prar,g(z) quantum field on (M, g)
(2) If two spacetimes have isometric subregions, then the Hilbert

space representations of the corresponding quantum fields
(restricted to the subregions) have to be isomorphic.

isometric

N N

\

isomorphic

b N == P

[1] forall x € N

(x)
[2]
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Local covariant QFT has a functorial structure

Definition 2.1. (i) A locally covariant quantum field theory is a covariant functor
o/ between the two categories Man and Alg, i.e., writing ay for & (), in typical
diagramatic form:

M, g) —2 s (M

!.. gf)
ﬁl Lgf
dM,g) —Ls (M, g

together with the covariance properties

Uy! O Uy = Uyloy »  Qidy = ez (M,g) -

Jor all morphisms € homgyan((M1, g¢), (M2, g5)), all morphisms /A=
homanpan (M2, £5). (M3, g3)) and all (M., g) € Obj(Man).

PMtan  Category of 4-dim globally hyperbolic spacetimes

2llg  Category of unital *-algebras
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Covariant quantum field = natural transformation

Definition 2.4. A locally covariant quantum field ® is a natural transformation
between the functors & and &, i.e. for any object (M, g) in 9an there exists a mor-
phism ®yr.g) : DM, g) — &/ (M, g) in Lop such that for each given morphism

Y € homagyan (M1, g1), (M2, g5)) the following diagram

Dmy,e))

YM,.g) —— Fd (M, g))

ol 2

DM, gr) — &/ (M2, g2)

qj(Mz.-Rz)

commutes.
The commutativity of the diagram means, explicitly, that
Qf]]j; ) d)(Ml-g1) = Cb(qugz) O 1!1“*,_

i.e., the requirement of covariance for fields.

The stress-energy-tensor of a linear quantum field defined before is a
local, covariant quantum field in this sense.
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Structural results making use of local general covariance

Let

(A[* g) - (I)[f\--f,g]
be a quantum field on curved spacetimes fulfilling local general
covariance.

(I) Spin and Statistics (Verch 2001):

Suppose that the quantum field fulfills the Wightman axioms
on Minkowski spacetime and obeys a causal dynamical law.
Then

Par,4) has the correct relation between spin and statistics on
each (M, g):

— it @57 4 has integer spin, it is bosonic

— if @5/ 41 has half-integer spin, it is fermionic.
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Structural results making use of local general covariance

(I1) PCT (Hollands 2003):

Suppose that the quantum field fulfills (a strong form of)
1SC and admits an operator product expansion around each

point In spacetime.

Then for each given spacetime there is an anti-linear operator
relating the operator product expansion of the quantum field
on the given spacetime with the operator product expansion of
the conjugate-charged quantum field on the same spacetime,
but with the reversed spacetime-orientation.

Linear quantum fields of fixed type (e.g Dirac, Proca..) in
uSC representations are examples for local generally covariant
quantum fields
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Perturbative Construction of Interacting Models

In order to study interacting quantum fields — here, the scalar
field with P(®), self-interaction — one starts with the free

scalar Klein-Gordon field
® = Py, on the spacetime (M, g)

in a £SC Hilbert space representation and then tries to define

e normal ordered products

N, (B (x1) - P(x,)), and

e time ordered products
Tn(®(x1) - P(xn))

of the field operators to all orders n, as well as time-ordered

products of normal ordered products, and so on.
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Infinite Renormalization (Brunetti and Fredenhagen 2000):

Brunetti and Fredenhagen generalized the Stueckelberg-Shirkov-
Epstein-Glaser approach to renormalizing selfinteracting quantum
flelds to curved spacetime.

Using pSC, they showed that the N,,, 7,... can be defined
iInductively by a consistent prescription extracting finite parts of
their singularities at coinciding spacetime points.

The N,, TJ,.. are then defined up to smooth parts
(renormalization ambiguity). The renormalizability criteria are
the same as the power-counting criteria on Minkowski spacetime.

Reduction of the Renormalization Ambiguity and General
Covariance (Hollands and Wald 2001, 2002):

Hollands and Wald showed that the normal ordering and time
ordering prescriptions can be implemented such that

(A{" g) — Nﬁn[ﬂ«f,g] ) (A{" g) — n|M,g] » etc

fulfill the principle of local general covariance.
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Then the remaining ambiguity in the definition of these quantities
is up to only finitely many parameters for each order of

perturbation theory (i.e., for each n):
To(zy,. .. x) =To(x, ..o, x,) + Po(z, ..., x0)

where P, is a (known) polynomial in the Nj and curvature
quantities.

Recently, Hollands (2008) has extended this construction to the case

of the Yang-Mills-model in curved spacetime.
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Topics not treated

> 3

(Local, covariant) superselection theory on curved spacetime
(Guido, Longo, Roberts, R.V.; Brunetti, Ruzzi)

vN-algebraic structure of Hadamard representations
(R.V.; Hollands, D'Antoni)

Scattering theory (Dimock, Kay; Bachelot)

Asymptotia, holography (Rehren; Dappiaggi, Moretti, Pinamonti)
“Geometric modular action” on curved spacetimes;

special representations on de Sitter spacetimes

(Buchholz, Summers, Mund et al; Bros, Epstein, Moschella)

New reference states on FRW cosmological spacetimes and new
results on cosmological particle creation (Olbermann; R.V., Degner)

Local thermal equilibrium states (Buchholz et al, Schlemmer, R.V.)
Applications of results and techniques of QFT in CST to
cosmology (Hollands, Wald; Fredenhagen, Dappiaggi, Pinamonti...

+ more to come in the timelike future!)
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The next 50 years

QFT in CST reaches a mature state; further development will
make it possible to calculate effects relevant to cosmology from
first principles.

Thus, it is likely that its importance will be growing.

A lot depends on the appropiate blend of conceptual clarity
and applicability.

QFT in CST once was a very fashionable topic...it may or may
not come into fashion again — at any rate it will continue to be
very closely interlaced with algebraic quantum field theory, to
the benefit of both domains of research.



Rainer Verch - AQFT 50

The next 50 years

QFT in CST reaches a mature state; further development will
make it possible to calculate effects relevant to cosmology from
first principles.
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In order to be irreplaceable one must always be different

Coco Chanel



