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Influences and inspirations from Klaus Fredenhagen’s work

I Microlocal analysis
I Local covariance
I Fields in AQFT [Fredenhagen–Hertel]
I Scaling limits and universal type
I Split property
I SJ states [Brum–Fredenhagen]
I Universal algebra
I ...and probably more besides.
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Abstract: A new approach to the model-independent description of quantum field the-
ories will be introduced in the present work. The main feature of this new approach is
to incorporate in a local sense the principle of general covariance of general relativity,
thus giving rise to the concept of a locally covariant quantum field theory. Such locally
covariant quantum field theories will be described mathematically in terms of covariant
functors between the categories, on one side, of globally hyperbolic spacetimes with
isometric embeddings as morphisms and, on the other side, of ∗-algebras with unital in-
jective ∗-monomorphisms as morphisms. Moreover, locally covariant quantum fields can
be described in this framework as natural transformations between certain functors. The
usual Haag-Kastler framework of nets of operator-algebras over a fixed spacetime back-
ground-manifold, together with covariant automorphic actions of the isometry-group
of the background spacetime, can be re-gained from this new approach as a special
case. Examples of this new approach are also outlined. In case that a locally covariant
quantum field theory obeys the time-slice axiom, one can naturally associate to it certain
automorphic actions, called “relative Cauchy-evolutions”, which describe the dynamical
reaction of the quantum field theory to a local change of spacetime background metrics.
The functional derivative of a relative Cauchy-evolution with respect to the spacetime
metric is found to be a divergence-free quantity which has, as will be demonstrated in
an example, the significance of an energy-momentum tensor (up to addition of scalar
functions) for the locally covariant quantum field theory. Furthermore, we discuss the
functorial properties of state spaces of locally covariant quantum field theories that entail
the validity of the principle of local definiteness.

1. Introduction

Quantum field theory incorporates two main principles into quantum physics, locality
and covariance. Locality expresses the idea that quantum processes can be localized in
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Origins
Among others:

I Haag–Kastler (1964) ‘net ideology’
Brought into sharp relief by Fredenhagen’s universal type result

I Wald’s axioms for renormalizing Tµν (SET) (1977)
I Kay’s approach to the Casimir effect (1979)

renormalize SET between the plates ‘as if’ in Minkowski

I Dimock’s functorial discussion of global isometries (1980)
I Kay’s F-Locality (1992, Haag’s 70th birthday)

on sufficiently small scales, local algebras of regions in (non)globally
hyperbolic spacetimes should coincide with what would be obtained
by regarding the local region as a spacetime in its own right
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Crystallization
I Microlocal Analysis and Interacting Quantum Field Theories:

Renormalization on Physical Backgrounds
Brunetti–Fredenhagen 2000

I made possible by the microlocal revolution Radzikowski
I renormalization performed up to finitely many free functions

“The main open point in this paper is the fixing of the finite renormaliza-
tions. One expects that they can be chosen in terms of local functions of
the metric, but a precise formulation meets a lot of problems. A similar
problem was studied (and partially solved) in the definition of the expec-
tation value of a renormalized energy momentum tensor of free fields by
R. Wald [61]. We hope to return to this problem...”

Following intensive discussions at Oberwolfach (October 2000)
I Spin statistics connection Verch math-ph/0102035

I Local Wick polynomials... Hollands–Wald gr-qc/0103074

I BFV paper (Haag’s 80th birthday) math-ph/0112041
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Fundamental idea
Regard a physical theory as a mathematical object.

Theory : Spacetimes→ Physical Systems
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Fundamental idea
Regard a physical theory as a mathematical object.

M

To each spacetime M there is a mathematical object A(M)
describing physics on M according to theory A.

To each suitable embedding of spacetimes ψ : M → N, there is a
suitable map A(ψ) : A(M)→ A(N) embedding the physics on M
as a subsystem of the physics on N.

Under successive embeddings: A(ϕ ◦ ψ) = A(ϕ) ◦A(ψ).
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Fundamental idea
Regard a physical theory as a mathematical object.

M
N

LL

ψ

ϕ
ψ
◦ ϕ

Local covariance: A theory is a functor from a category of (globally
hyperbolic) background spacetimes to a category of physical systems

A : BkGrnd→ Phys

Morphisms in Phys are monic – represent subsystem embeddings.
For QFT, Phys is a category of unital ∗-algebras.
We discuss BkGrnd later
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Interpretation: constructive use of ignorance

I The causal complement of our spacetime region is unknowable
I Nonetheless, we can successfully conduct physics
I Conclusion: our ignorance cannot matter

Local covariance is a consistency mechanism guaranteeing that
ignorance of spacetime beyond the region in question is irrelevant.

NB Topological data may have a different status.
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Typical choices of BkGrnd
Typical choice for scalar fields is BkGrnd = Loc, defined with

Obj oriented & time-oriented globally hyperbolic spacetimes (of
fixed dimension, finitely many components)

Mor hyperbolic embeddings: isometric embeddings preserving
time and space orientations with causally convex image.
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Typical choices of BkGrnd
Typical choice for scalar fields is BkGrnd = Loc, defined with

Obj oriented & time-oriented globally hyperbolic spacetimes (of
fixed dimension, finitely many components)

Mor hyperbolic embeddings: isometric embeddings preserving
time and space orientations with causally convex image.

Alternatives, allowing for general spin, include SpinLoc, FLoc
Obj M = (M, e) where M is a smooth manifold of dimension n

on which e = (eν)n−1
ν=0 is a global coframe, from which a Loc

object can be built.
Mor ψ : (M, e)→ (M′, e′) must induce a Loc-morphism and

obey ψ∗e′ = e.

Can add bundles, external fields, or use categories fibred over Loc
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The dictionary
Physical concept Mathematical realization

Theory Functor A
Subtheory Natural transformation A

.→ B

Equivalence of theories Natural isomorphism
Global gauge group Aut(A)
Einstein causality Monoidal structure
Dynamics Timeslice property
Action Relative Cauchy evolution
Fields ‘Naturals’ Φ : D .→ A forming an

abstract ∗-algebra Fld(A)
Additivity Joins of subobjects
State space Subfunctor of A∗+,1 (contravariant)

Mostly present already in BFV. Subtheories CJF + Verch gauge group CJF and
monoidal structure Brunetti, Fredenhagen, Imani, Rejzner appeared later.
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Dynamics: Time-slice axiom and relative Cauchy evolution
ψ : M → N is Cauchy if ψ(M) contains a Cauchy surface of N.
A locally covariant theory A satisfies the timeslice axiom if

ψ is Cauchy =⇒ A(ψ) is an isomorphism

CJ Fewster University of York Paradigm of LCQFT
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Dynamics: Time-slice axiom and relative Cauchy evolution
ψ : M → N is Cauchy if ψ(M) contains a Cauchy surface of N.
A locally covariant theory A satisfies the timeslice axiom if

ψ is Cauchy =⇒ A(ψ) is an isomorphism

Rigidity of local covariance Any two spacetimes with oriented
diffeomorphic Cauchy surfaces are linked by Cauchy morphisms.
Fulling, Narcowich & Wald 1981; CJF & Verch 2011

M

N
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Dynamics: Time-slice axiom and relative Cauchy evolution
ψ : M → N is Cauchy if ψ(M) contains a Cauchy surface of N.
A locally covariant theory A satisfies the timeslice axiom if

ψ is Cauchy =⇒ A(ψ) is an isomorphism

ι+[h]

ι−[h]

ι+

ι−
h

M[h]M

M+

M−

If A obeys timeslice, any metric perturbation h preserving global
hyperbolicity defines an automorphism of A(M),

rceM [h] = A(ι−) ◦A(ι−[h])−1 ◦A(ι+[h]) ◦A(ι+)−1
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Dynamics: Time-slice axiom and relative Cauchy evolution
ψ : M → N is Cauchy if ψ(M) contains a Cauchy surface of N.
A locally covariant theory A satisfies the timeslice axiom if

ψ is Cauchy =⇒ A(ψ) is an isomorphism

ι+[h]

ι−[h]

ι+

ι−
h

M[h]M

M+

M−

The functional derivative gives a stress-energy tensor:

[TM(f ),A] = −2i d
ds rceM [h(s)]A

∣∣∣∣
s=0

f = dh(s)
ds

∣∣∣∣
s=0

.
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Dynamics: Time-slice axiom and relative Cauchy evolution
ψ : M → N is Cauchy if ψ(M) contains a Cauchy surface of N.
A locally covariant theory A satisfies the timeslice axiom if

ψ is Cauchy =⇒ A(ψ) is an isomorphism

ι+[h]

ι−[h]

ι+

ι−
h

M[h]M

M+

M−

Variation of other background structures gives conjugate currents.
Zahn, CJF & Schenkel; applied to describe background independence by
Brunetti, Fredenhagen, Rejzner
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What use is local covariance?
I Renormalization

I freedom reduced to constants, Hollands & Wald

I renormalization of gauge theories Hollands, Fredenhagen & Rejzner

I Structural analysis of QFT
I Transfer of results/properties from Minkowski by ridigity,

e.g., Reeh–Schlieder, split, modular nuclearity, spin-statistics...
Verch, CJF, Sanders, Lechner

I Superselection theory Brunetti, Ruzzi

I Non-existence of preferred states CJF & Verch

I Coleman-Mandula analogue CJF

I Higher structures Benini, Schenkel+

I Physical applications or influences
I local thermal observables & Unruh Buchholz+... Verch

I superselection for massless theories Buchholz & Roberts

I cosmology Dappiaggi, Fredenhagen, Hack, Pinamonti, Verch, Degner

I Casimir energy CJF & Pfenning, Marecki

I quantum gravity Brunetti, Fredenhagen, Rejzner

CJ Fewster University of York Paradigm of LCQFT



Genesis Illustrations CM SPAss Conclusion

Illustration I: Timeslice and Einstein causality combined
If M = Minkowski space and Di are causally disjoint diamonds

A(M)⊗A(M) ∼= A(D1)⊗A(D2) ∼= A(D1 t D2) ↪→ A(M)

(timeslice, plus Einstein causality).

Iterating,

A(M)⊗k ↪→ A(M) ∀k ∈ N

Every N ∈ Loc has subspacetime D with Cauchy surface Bn−1, so

A(M)⊗k ↪→ A(M) ∼= A(D) ↪→ A(N) ∀N, k ∈ N.

Consequence: excluding trivial cases with dimA(M) ≤ 1,

dimA(N) =∞ ∀N ∈ Loc

Note the geometrical nature of the argument.

CJ Fewster University of York Paradigm of LCQFT
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Illustration II: Naturality, nuclearity and N CJF 2013

The preceding argument shows that it is problematic to interpret
A(M)⊗k as k copies of the physics described by A(M).

Old wisdom: algebras are less important than their ‘relative position’,
and only net morphisms are significant.

LCQFT replaces nets by functors, and net morphisms by naturals.

Regard A(M) ↪→ B(M) as significant iff it is achieved ‘in the same
way’ in all spacetimes, i.e., a sub-theory embedding

A(M) B(M)

A(N) B(N)

ζM

A(ψ)

ζN

B(ψ)
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Illustration II (ctd)
Any subtheory embedding A⊗k .→ A induces
an ouroboros endomorphism

A
.→ A⊗k .→ A

that is not an automorphism (unless A ∼= A⊗k).
Example: Hilbert’s hotel, A⊗ℵ0 , with endomorphism

ηMA1 ⊗ A2 ⊗ · · · = 1⊗ A1 ⊗ A2 ⊗ · · · .

Given suitable nuclearity criteria, however, one may show: CJF, 2012

Theorem: All endomorphisms of a [suitable] locally covariant
theory are automorphisms and the global gauge group is compact.

Nuclearity & naturality allow us to count.

CJ Fewster University of York Paradigm of LCQFT
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Illustration III: Characterisation vs construction CJF & Verch

QFT in CST has tended to regard theories in terms of their
constructions. LCQFT can provide characterisations.

Comparison: R can be
I constructed as the completion of Q
I characterised as an ordered field with the l.u.b. property.

The characterisation is more practically useful than the construction.

Example: let
I P : D .→ D be the Klein-Gordon operator
I E : D⊗2 .→ C be the advanced-minus-retarded bisolution

regarded as naturals. Then, a real Klein–Gordon theory is a pair
(A,Φ) where A : Loc→ Alg, Φ ∈ Fld(A), s.t.

Φ∗ = Φ, Φ ◦ P = 0,
bilocal fields︷ ︸︸ ︷

[Φ,Φ] = iE1
and with the universal property that for each such pair (B,Ψ),
∃ a unique α : A .→ B s.t.

Ψ = α · Φ, i.e. ΨM(f ) = αMΦM(f )
(A,Φ) is characterised uniquely up to equivalence in this way.

QFT in CST, without the spacetimes!

CJ Fewster University of York Paradigm of LCQFT
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Illustration IV: Casimir effect CJF & Pfenning; Marecki

`

Cavity V of arbitrary geometry.

Apply Minkowski QEIs to an
inertial line with x = x0 within
the diamond to find

ρC ≥ −
C
`4 .

for the Casimir energy density ρC .
Optimise over ` to obtain an
a priori bound

ρC ≥ −
C

dist(x0, ∂V )4

based on locality, QEIs and
simple geometry.
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An analogue of the Coleman–Mandula Theorem CJF 2016

Although generic curved spacetimes have no symmetries, the
Lorentz group acts functorially on FLoc.
Each Λ ∈ L0 corresponds to a functor T(Λ) : FLoc→ FLoc

T(Λ)(M, e) = (M,Λe), (Λe)µ = Λµνeν

and so that T(Λ)(ψ) has the same underlying map as ψ.

Now define an action of L0 on theory A : FLoc→ Phys by

ΛA = A ◦ T(Λ)

i.e., A acting on ‘pre-rotated frames’. NB: ΛΛ′
A = Λ′

(ΛA).

If the choice of frame is irrelevant, then A and ΛA are equivalent
for all Λ, and A is called L0-covariant.

CJ Fewster University of York Paradigm of LCQFT
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L0-covariance requires the existence of natural isomorphisms

η(Λ) : A .→ ΛA, η(1) = idA.

Comparing successive Lorentz transformations Λ1, Λ2 vs Λ2Λ1
gives a non-abelian group 2-cocycle (ξ, φ) of L0 valued in Aut(A).

Theorem: A induces a canonical cohomology class

[A] = [(ξ, φ)] ∈ H2(L0; Aut(A))

and therefore a group extension of L0 by Aut(A)

1→ Aut(A)→ E → L0 → 1

Locally covariant fields transform in E -multiplets.
No additional assumptions are needed beyond covariance w.r.t. L0.
Question: Can an E -multiplet mix inequivalent L0 irreps?

CJ Fewster University of York Paradigm of LCQFT
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Theorem (analogue of Coleman–Mandula): If A obeys timeslice,
additivity and local dynamical Lorentz invariance then

I A is covariant w.r.t. S, universal cover of L0
I [A] ∈ H2(S,Aut(A)) is trivial, so E = L0 ×Aut(A)
I inequivalent L0 field multiplets are not mixed by E .

Local dynamical Lorentz invariance = triviality of r.c.e. for
homotopically trivial local frame variation.

Corollary: If n ≥ 3 then A has non-integer spin multiplets only if
Z (Aut(A)) contains a copy of π1(L0) (= Z2 in n ≥ 4).

I theories of observables only admit integer spin (trivial Aut(A))
I (for different reasons) the same is true of any theory pulled

back to FLoc from Loc.

CJ Fewster University of York Paradigm of LCQFT
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SPASs and dynamical locality CJF + Verch 2012

Contrary to intuition, a locally covariant theory need not represent
the same physics in all spacetimes (SPASs).
Fact: There are non-constant functors B : Loc→ PhysLoc. Any
such B induces a ‘diagonal theory’ B∆ : Loc→ Phys.

B(M)(N)

B∆(M) = B(M)(M) B(N)(N) = B∆(N)

B(N)(M)

B∆(ψ)
B(M)(ψ)

B(ψ)M

B(ψ)N

B(N)(ψ)

B∆ agrees with B(M) in M, but agrees with B(N) in N.
B∆, B(M) and B(N) cannot each represent SPASs if B(M) 6∼= B(N).

CJ Fewster University of York Paradigm of LCQFT
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SPASs and dynamical locality CJF + Verch 2012

Contrary to intuition, a locally covariant theory need not represent
the same physics in all spacetimes (SPASs).
It is difficult to give an intensive definition of SPASs and there may
be many possible answers. We take an extensive approach.

A collection T of theories describes a coherent notion of SPASs if
each subtheory embedding α : A .→ B with A,B ∈ T is either an
isomorphism in all spacetimes or in none.

An example of a coherent notion of SPASs may be given based on
local physical content.

CJ Fewster University of York Paradigm of LCQFT
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SPASs and dynamical locality (ctd)
Consider the local physical content of region K within M

Kinematic description: Akin(M; K ) = A(ιK )(A(M|K ))

Dynamical description using relative Cauchy evolution:

Adyn(M; K ) = {A ∈ A(M) : rceM [h]A = A for all h supp in K⊥}

If these descriptions agree, the theory is called dynamically local.

K
ιK

M

K

CJ Fewster University of York Paradigm of LCQFT
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SPASs and dynamical locality (ctd)
Consider the local physical content of region K within M

Kinematic description: Akin(M; K ) = A(ιK )(A(M|K ))

Dynamical description using relative Cauchy evolution:

Adyn(M; K ) = {A ∈ A(M) : rceM [h]A = A for all h supp in K⊥}

If these descriptions agree, the theory is called dynamically local.

In familiar models, dynamical locality holds except in cases of
(broken?) gauge symmetry. CJF, Verch, Ferguson, Lang, Schenkel
Scalar field (+ external sources), extended Wick algebra, Dirac, e.m.

Theorem: The dyn. loc. theories form a coherent notion of SPASs.

Application: model-independent proof that there is no local and
covariant way to choose a preferred state in each spacetime.
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Conclusion

Local covariance is a mathematically natural and rich paradigm for
QFT in CST, with numerous successes to its name.

It is conceptually clear, and allows the discussion of both
foundational issues and physical applications in a way that would
be cumbersome by other means.

Happy Birthday, Klaus! We look forward to many more insights
and developments to come.
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