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Basic settings for quantum statistical mechanics

Let A be the C*—algebra describing the observables of the theory.

m Time evolution (also called dynamics) is described by a one-parameter group of
x—automorphisms t — ay, ar 1 A — A.

m A C*—algebra A equipped with a continuous time evolution a forms a
C*—dynamical system

m A state w over A is a linear functional which is positive and normalized w(1) = 1.

GNS construction permits to represent A as bounded operators on some Hilbert space up
to unitary equivalences: (9., 7w, ¥w) Hw is an Hilbert space, 7, (A) € B(Hw) is a
x—homomorphism and v, € ) is such that

w(A) = (Y, T (A)w)



C*—dynamical systems and equilibrium states

Equilibrium states are characterized by the KMS condition

Definition (KMS states)

A state w for A, invariant under ay, is a (3, a:)—KMS state if VA, B € A the map

t — w(Aay(B))
can be extended to an analytic function in the strip $(t) € [0, 8] and if
w(Aaig(B)) = w(BA).
B is the inverse temperature.
m Gibbs states for discrete systems are KMS states

m KMS condition is meaningful for infinitely extended systems

m KMS states are stable under perturbation of the dynamics



Araki construction of perturbed KMS states

Consider a perturbed dynamics o,

Got) = Lo +itpA
ar (A) = Up(t)ou(A)Up(t)", where — i% Up(t) = Up(t)ae(P)

P = P* € A is the perturbation Hamiltonian and Up(t) is the cocycle gen. by P

Theorem (Araki)

Let w be an extremal (8, «)—KMS state and af the perturbed dynamics. Consider

w(AUR(iB))
w(Up(iB))

where w(AUp(iB)) is the analytic continuation of w(AUp(t)), then w(A) is an extremal
(8, 2”)—KMS state.

wP(A) =



Stability of KMS states for C*—dynamical systems

If strong clustering holds for w

(Aat(B)) = w(A)w(B).

lim w
t—+oo
m Return to equilibrium property:

lim w(af (A)) =w’(A)  and lim w”(a:(A)) = w(A)

t—o0 t—o0

[Haag Kastler Trych-Pohlmeyer, Bratteli, Bratteli Robinson Kishimoto]

Aim
extend the scheme to encompass perturbatively constructed KMS states for interacting
quantum field theories



Quantum field theories (PAQFT)

m Real scalar fields on Minkowski space M (with signature —, +, +, +)
0o+ mto e AVO0) =0, V(0)= [ $0F ()

m Observables are functionals over the off-shell field configurations
g €C:=C>®(M;R)

Fuc :={F : C — C | smooth, compactly supported, microcausal }

Examples:

(@) = [ 1eldut),  Fle)= [ et Ndu(duy), W) = [ (00 dux)
M Mx M M

m Local functionals are contained in Fpc

Floc := {F € Fuc

suppF™ ¢ Diagn}

m F,c equipped with the pointwise product F - G(¢) := F(¢)G(p) and with the
complex conjugation as involution forms the commutative *—algebra of classical
observables.



Free quantum theory

m Set A=0
P = —[¢+ m’¢p =0

m Deformation Quantization: pointwise product is deformed to a non-commutative
*—pI’OdUCt (compatible with the free dynamics):

Fx, G:=e" ’WW F(@)G(gp)

©'=p

where w is an Hadamard bidistribution:

(a weak solution of the equation of motion up to smooth functions)

[P(F), D(h)]« := O(F) *x D(h) — P(h) x P(f) = ihA(F, h), f,h € D(M)
its wave front set is such that the product with microcausal functionals is well
defined.

m A is the causal propagator (the reatrded minus advanced fundamental
solution of the KG eq.)



Introduction to pAQFT

m Interacting fields can be treated perturbatively within the algebraic picture
[Brunetti, Diitch, Fredenhagen, Hollands, Rejzner, Wald]

Observables are elements of F,c[[A]] namely formal power series in the coupling constant
A with coefficients in Fc.

m To construct them explicitly, the time ordered product is needed:

T Fol = Fue

loc

On regular functionals, T is characterised by the causal factorisation property
T(A,B)=T(A)* T(B) if AZB

where A > B if J"(supp(A)) Nsupp(B) = 0.
It can be extended to local functionals
(in a non unique way the ambiguities are renormalization ambiguities).
m The formal S—matrix is the time ordered exp. of the interaction Lagrangian
V € Froc

S(V) :=expr (%V)



m The Bogoliubov map is used to construct interacting field theories
Rv(F) := iS(V)—1 *S(V + \F)
d\ =0

m Observables of the interacting field theory are represented as elements of the
algebra
-FI C ]——;LC

generated by elements of Ry (Fioc)-

m Ry(P(f)) satisfies the off shell interacting equation of motion
m Ry(F) is compatible with causality thanks to the causal factorisation
property of the S—matrix

S(A+B+C)=S(A+B)xS(B) 'xS(B+C), if A=C

m An interacting state w is fixed once the correlation functions among local
interacting fields are given

W(Fiy.o Fa) = w(Ry(F) - % Rv(Fa)),  Fi € Fioc.
m Interacting time evolution

o/ Rv(F) := Ry (arF)



Adiabatic limits

m We would like to have interaction Lagrangians invariant under spacetime
translations.

Example: we would like to treat
Vo) = [ o)t duty
however, this is not compatible with the scheme discussed above.

m Insert a cutoff g (a G* function equal to 1 in the region where the observables are
supported). Eventually remove this cutoff taking a limit where g — 1. (This is
called adiabatic limit)

V() = / ()L (x)du(x)

Can it be done in a reasonable way?




Strategy

m Thanks to the Time-slice axiom it is sufficient to define the
state on interacting observables F;(X.) supported in some
neighborhood of a Cauchy surface:

Ye={(t,x) e M| —e< t< e}

(Fi(Xe) is generated by R/(F) with F local and suppF C X.)

[Chilian, Fredenhagen]

m The causal factorisation property implies that
V.
FE(E),  and  F (%)
are unitarily equivalent if g — g’ N¥. = () and they are equal if g — g’ NJ~(X) =10
[Hollands Wald, Brunetti Fredenhagen]

m Hence, select g(t,x) = x(t)h(x) where x is equal to 1 on J*(X.) and it is past
compact (x(t) =0 for t < —2¢)

m The only limit we have to care about is h — 1 [Fredenhagen Lindner]



KMS state and the adiabatic limit

[Fredenhagen Lindner] have constructed KMS state under the adiabatic limit extending
the Araki construction to pAQFT.

It exists an unique free quasifree extremal KMS state w” at inverse temperature 8 wrt

o 11
B —

wy (p) =

o m‘s(l’2 + m®)sign(po)

Fix Vynh.
m Analyze o) and compare it with a..

m Although their generators are not at disposal, it holds that
o (A) = Uy(t) * ar(A) x Uy (t) !
m Where
Uo() =143 i"/ dty ... dty e, (KX) 5%, (KY)
tSp

n>1

where S, is the n—dimensional simplex and

KX = Ry(H(hY),  H(h) = / hY.Lidu



m Having Uy at disposal the Araki construction can be repeated.

m w?" depends on h through Uy. Exploiting the decaying properties of the free
KMS state 2-pt function for large spatial separation [Fredenhagen Lindner| have
shown that the limit h — 1 can be taken.

m In this way one obtains the KMS state for the interacting theory under the
adiabatic limit.

m The limiting state does not depend on Y.
WPV can be given in terms of the truncated n—point functions

wB’V(A):Z(fl)"/ du whe A®éaiuk(K)
Sn k=1

n>0 B

W(Fy % -+ % Fp) = 3 ch<®F,-),

PePart{l,...,n} IEP i€l



Stability and KMS condition

Aim
Analyze the return to equilibrium properties in these states.

We start with the case of fixed h.

Proposition (Clustering condition for a)

Consider A and B two elements of Fi(O), (O C X.), it holds that

lim w”(Ax a:(B)) = w’(A)w’(B)
t—oo
in the sense of formal power series in the coupling constant.

Idea of the proof.
At fixed x, y, wf(x,y + te) decays as 1/1.‘3‘/2 for large t. [Bros Buchholz]



The clustering condition implies the following return to equilibrium

m WV (ar(A) = fim <@T(A)x Uv(iB))
Aim W (ar(A)) = lim = Oy @3)

— w?(A)

where the limit is taken in the sense of perturbation theories.

To check if lim7_, o w? (a¥(A)) = w?Y(A) holds we have to work another bit.



The clustering condition established above does not suffice to obtain the sought return
to equilibrium to all orders in K.

Proposition (Clustering condition for )

The following clustering condition,

lim _[w(Axay (B)) - &’ (A’ (at (B))] =0,

t—+oo

for A and B in F;(O), holds in the sense of formal power series in the coupling constant
whenever the perturbation Lagrangian V., has spatial compact support.

Idea of the proof



Stability

Theorem (Stability)

If V. is a spatially compact interaction Lagrangian
lim w?(@¥(A) = w?Y(A)
T—o0

where A is an element of Fi(X.).



Instabilities in the adiabatic limit - infrared divergences

m Under the adiabatic limit, the clustering condition fails at first order in
perturbation theory also when the ergodic mean is considered, i.e.

im 1im £ [ de (wﬁ(A*at(K))—wﬂ(A)wﬁ(K)) £0

T—o0 h—1 0

m We study the ergodic mean of w? 0 a¥ to smoothen oscillations
V,+ 1 i Br .V
T(A) = lim = A))d
A= lim 2 [ @Y (a)dr
and eventually we analyze the limit T — oo.

m We do not expect to have the return to equilibrium property.

m Infrared divergences occur in the large time limit of the ergodic mean
w¥’+(A) taken after the adiabatic limit h — 1.

B,

m The expansion of limy_,1 w®" is free from infrared divergences. We thus analyze

TN G v
w'(A) = lim I|m7 dt WY (a:(A))

T—o0 h—1 0



A non-equilibrium steady state for the free field theory

consider the ergodic mean of w®" with respect to the free time evolution a,

i
Wt (A) = lim Iim% WPV (0 (A))dr
0

T—o00 h—1

which is seen as a state (defined as a formal power series) for the unperturbed theory.

Proposition

The functional w™ defined in the sense of formal power series, is a state for the free
algebra F. Furthermore, w™ is invariant under the free evolution o.

Theorem

wT does not satisfy the KMS condition with respect to a.

w™ is thus a non equilibrium steady states (NESS)

How far is w™ from equilibrium?




Relative Entropy

m Relative entropy can be used to measure the “distance” between two states.

m Other thermodynamic quantities can be obtained from it.

In the case of a von Neumann algebra 2l C *BH and two normal states W and ¢.
The Araki relative entropy

S(V, ) ;= —(V,log(Avy,0)V).
where the relative modular operator is obtained as

Avo :=S'S, SAU=A0d,  AcAl

Avy o is not directly available in pAQFT




Relative entropy and perturbations in W*—dyn. systems

(9, «r) a W*—dynamical system on the Hilbert space $), o is generated by H.

m Let Qp € $ be the GNS vector of the KMS state at inverse temperature 8 wrt a;.

Consider a perturbation P which is a self-adjoint element of 91. Let Q1 € § be
the GNS vector of the Araki KMS state over Qq. It holds that

0 = %UQO, U= egHe—g(H‘H’)’ N? = (Q0, U™ UQp).
m The relative modular operator between Q; and Qo is
AQIQO = N2e_ﬁH

m The relative entropy [Bratteli Robinson]

S(Q1, ) = B(Q1, HQ1) — log(N?) = —B(Q1, P ) — log(N?).



Relative entropy for perturbatively constructed KMS states

m In pAQFT we do not have the relative modular operator at disposal.

m But if his of compact support we have the generators K;, hence we can define the
relative entropy by analogy

S, W) =~ (BK) — log(w” (Ur(iB)))
® In the same manner we get

S, W) = —w V1 (BK) +w” V1 (BKs) — log(w” (Ui(iB))) +log(w” (Us(iB)))

m and

S(" o, ) = S W)+ (@l (BKo—BK) —” Y (BKo—BK2)



Properties Relative Entropy

The generalized relative entropy S (wB Mo al/ 2 WP ’V3) satisfies the following properties:
a) (Quadratic quantity) is at least of second order both in K; and in \.
b) (Positivity) is positive in the sense of formal power series for every t.
c) (Convexity) is convex in Vi, Vo and V3 in the sense of formal power series.

d) (Continuity) is continuous in V; in the sense of formal power series with respect to
the topology of F ..



Adiabatic limits

Haag's Theorem says that under the adiabatic limit the relative entropy diverges.
S, W) =~ (BK:) — log(w” (UL(i)))

Let V; for i € {1,2,3} be three interaction potentials with a common spatial cutoff h,
the relative entropy per unit volume is

8.V

57V3) = ,l,im (w ° ahwﬁ,%)

s(w”" o o, w
where /(h) is the integral of the cutoff function over the volume R?

I(h) :== /]1{3 h(x)dx

The relative entropy per unit volume s(wﬁ’v1 o at,wB’V3) is

m finite

m positive



Entropy production

m In the case of C*—dynamical systems, entropy production is used to test how far
is a NESS from equilibrium. [Ojima and collaborator, Ruelle, Jacsic Pillet.]

m For C*—dynamical systems: Let w be a KMS state with respect to a; and o the
dynamics perturbed by V. The entropy production in the state 7 of & with
respect to a; is defined as

= 70‘1‘( BY)

t=0 t=0

Ev(n) =n(ov), where oy = %at(—/jV)

. Vo - . .
m If is an 2 invariant state we may rewrite it

En () = Sul-a¥ia(510))

t=0

m These formulas can be generalized to pAQFT



Properties of the entropy production

Proposition

Consider V; for i € {1,2,3} three perturbation potentials with spatially compact
supports then

t
S wﬂ,V1 anz,wﬂ’\@ -S wB7V17w[3,V3 + Ev. wB,V1 Oag/z ds
1
0

where Ev, (w1 0 al?) is the entropy production of al? relative to the KMS state w®"3.



NESS and entropy production

For the NESS the entropy production per unit volume

11 t
o W TS TR 8.V
e(wy,) = tl|m ’II|mI 0 /0 ds E(w” " o )

The NESS w™ discussed above has vanishing entropy production per unit volume.

+

This means that w™ is not so far from being a KMS state.

NESS with vanishing entropy production are called thermodynamically simple.



Conclusion

Summary

m Equilibrium states in perturbative algebraic quantum field theory.
m Proof of the return to equilibrium for interaction Lagrangian compact in space
m Failure of the return to equilibrium in the adiabatic limit.

m Relative entropy and entropy production among these states can be computed.



Conclusion

Thanks a lot for your attention

Happy birthday Klaus!
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