From Fredenhagen's universal algebra to homotopy theory and operads

Alexander Schenkel

School of Mathematical Sciences, University of Nottingham

Quantum Physics meets Mathematics: A workshop on the occasion of Klaus Fredenhagen's 70th birthday, University of Hamburg, December 8-9, 2017.

Outline

- 1. Fredenhagen's universal algebra and some of its applications in AQFT
- 2. How it provided motivations for our homotopical AQFT program
- 3. A whole zoo of (improved) universal constructions from operad theory

4. Birthday present:

A theorem about AQFTs on spacetimes with timelike boundary

Fredenhagen's universal algebra

Origins

- Starting late 80's: Klaus studied representation theory and superselection sectors of 2-dim. QFTs, including chiral conformal QFTs [cf. Carpi's talk].
- \diamond A ccQFT has an underlying functor $\mathfrak{A}:\mathbf{Int}(\mathbb{S}^1)\to\mathbf{Alg}$, which assigns
 - an algebra (of observables) $\mathfrak{A}(I)$ to every proper interval $I \subset \mathbb{S}^1$;
- a homomorphism $\mathfrak{A}(i):\mathfrak{A}(I)\to\mathfrak{A}(I')$ to every inclusion $i:I\to I'$.

Def: Fredenhagen's universal algebra corresponding to $\mathfrak{A}:\mathbf{Int}(\mathbb{S}^1)\to\mathbf{Alg}$ is

- an algebra $\mathfrak{A}^{\mathrm{u}} \in \mathbf{Alg}$;
- together with homs $\kappa_I : \mathfrak{A}(I) \to \mathfrak{A}^u$ satisfying $\kappa_{I'} \circ \mathfrak{A}(i) = \kappa_I$, for all i,

which are universal: For any other such $(B,\{\rho_I:\mathfrak{A}(I)\to B\})$ there exists a unique hom $\rho^{\mathrm{u}}:\mathfrak{A}^{\mathrm{u}}\to B$, such that the following diagrams commute

 $\diamond \mathfrak{A}^{\mathrm{u}}$ is useful for representation theory $\mathrm{Rep}(\mathfrak{A}) \cong \mathrm{Rep}(\mathfrak{A}^{\mathrm{u}})$.

Intermezzo: Colimits

The universal algebra is a special instance of a colimit in category theory.

Def: (i) A cocone of a functor $F: \mathbf{D} \to \mathbf{C}$ is an object $c \in \mathbf{C}$ together with a natural transformation $\xi: F \to \Delta(c)$ to the constant functor $\Delta(c): d \mapsto c$.

(ii) A colimit of F is a universal cocone $(\operatorname{colim} F, \iota : F \to \Delta(\operatorname{colim} F))$, i.e. given any other cocone $(c, \xi : F \to \Delta(c))$ there exists a unique C-morphism $f : \operatorname{colim} F \to c$, such that the following diagram commutes

$$F \xrightarrow{\xi} \Delta(c)$$

$$\Delta(\operatorname{colim} F) \xrightarrow{\delta(f)} \Delta(c)$$

Fredenhagen's definition is recovered by writing this in components:

 \diamond **Good News:** For functors $\mathfrak{A}: \mathbf{D} \to \mathbf{Alg}$ with values in algebras, the colimit $\operatorname{colim} \mathfrak{A}$ always exists! \Rightarrow Fredenhagen's universal algebra always exists!

Beyond the circle

- The universal algebra is a very flexible concept!
- \diamond **Problem:** Want to construct $\mathfrak{A}(M)$ on complicated spacetime M, but just manage to get a functor $\mathfrak{A}: \mathbf{Reg}_M \to \mathbf{Alg}$ on 'nice' regions $U \subseteq M$.
- \diamond **Solution:** Set $\mathfrak{A}(\underline{M}) := \operatorname{colim}(\mathfrak{A} : \operatorname{Reg}_M \to \mathbf{Alg})$ to be universal algebra!
- Together with students, Klaus studied particular applications:
 - 1. Maxwell theory [Benni Lang, Diplomarbeit 2010]

Maxwell's equations $\mathrm{d}F=0=\delta F$ for $F\in\Omega^2(M)$ allow for topological charges $[F]\in H^2(M;\mathbb{R})$ and $[*F]\in H^{m-2}(M;\mathbb{R})$ on general spacetimes M.

Construct $\mathfrak{A}: \mathbf{Reg}_M \to \mathbf{Alg}$ for contractible regions \mathbf{Reg}_M in M and analyze properties of the global algebra $\mathfrak{A}(M) := \mathrm{colim}\,\mathfrak{A}$. [more on this later...]

2. Non-globally hyperbolic spacetimes [Christian Sommer, Diplomarbeit 2006] Let M be a spacetime with timelike boundary and consider globally hyperbolic regions $\mathbf{Reg}_{\mathrm{int}M}$ in the interior $\mathrm{int}M\subseteq M$.

Assuming F-locality [Kay], $\mathfrak{A}: \mathbf{Reg}_{\mathrm{int}M} \to \mathbf{Alg}$ can be constructed as usual.

Relationship between ideals of $\mathfrak{A}(M) := \operatorname{colim} \mathfrak{A}$ and boundary conditions!

Fredenhagen's universal algebra in LCQFT

- \diamond In locally covariant QFT, one studies functors $\mathfrak{A}:\mathbf{Loc}\to\mathbf{Alg}$ on the category of all spacetimes \mathbf{Loc} [cf. Fewster's talk].
- \diamond Consider full subcategory $j: \mathbf{Loc}_{\mathbb{C}} \xrightarrow{\subset} \mathbf{Loc}$ of contractible spacetimes and assume that you are given a theory $\mathfrak{A}_{\mathbb{C}}: \mathbf{Loc}_{\mathbb{C}} \to \mathbf{Alg}$.
- ♦ Construction/Observation: [Benni Lang, PhD in York (2014) with Fewster]
 - On every spacetime $M \in \mathbf{Loc}$, we may compute the universal algebra

$$\mathfrak{A}(M) := \operatorname{colim} \left(\ \operatorname{\mathbf{Loc}}_{\circledcirc} / M \xrightarrow{\ \ Q_M \ \ } \operatorname{\mathbf{Loc}}_{\circledcirc} \xrightarrow{\ \ \mathfrak{Alg} \ \right)$$

on the over category \mathbf{Loc}_{\odot}/M of contractible regions $U \to M$ in M.

• This defines functor $\mathfrak{A}:\mathbf{Loc}\to\mathbf{Alg}$ on all spacetimes \mathbf{Loc} , which is universal in the sense of left Kan extensions

Universal algebra in LCQFT = left Kan extension along $j: \mathbf{Loc}_{\bigcirc} \to \mathbf{Loc}$

The homotopical AQFT program

M. Benini, AS, U. Schreiber, R. J. Szabo and L. Woike

Universal algebra for Maxwell theory

- \diamond Classical Maxwell theory on contractible spacetimes $U \in \mathbf{Loc}_{\bigcirc}$:
 - $A \in \Omega^1(U)$ with gauge trafos $A \mapsto A + \frac{1}{2\pi i} d \log g$, for $g \in C^\infty(U, U(1))$
 - Maxwell's equation $\delta dA = 0$, i.e. $A \in \Omega^1_{\delta d}(U)$
- \diamond Gauge invariant and on-shell exponential observables $[\varphi] \in \Omega^1_{c,\delta}(U)/\delta d\Omega^1_c(U)$

$$\mathcal{O}_{[\varphi]}\,:\,\frac{\Omega^1_{\delta\mathbf{d}}(U)}{\mathbf{d}\Omega^0(U)}\longrightarrow\mathbb{C}\ ,\ \ [A]\longmapsto\exp\left(2\pi\mathrm{i}\int_U\varphi\wedge*A\right)$$

with presymplectic structure $\omega_U([\varphi], [\varphi']) = \exp(2\pi i \int_U \varphi \wedge *G_{\square}(\varphi'))$.

- \diamond Quantum Maxwell theory $\mathfrak{A}_{\mathbb{C}}: \mathbf{Loc}_{\mathbb{C}} \to \mathbf{Alg}$ assigns the Weyl algebras.
- \diamond Universal algebra $\mathfrak{A}(M)$ is the Weyl algebra corresponding to field strength theory on $M \in \mathbf{Loc}$ [Dappiaggi,Lang]: $F \in \Omega^2(M)$ satisfying $\delta F = 0 = \mathrm{d}F$
- \diamond **Problem:** $\mathfrak{A}(M)$ does **NOT** have a gauge theoretic interpretation
 - 1. It misses flat connections/Aharonov-Bohm phases on M!
 - 2. $[F] \in H^2(M;\mathbb{R})$ is not integral \Rightarrow No magnetic charge quantization!

Homotopical improvement of the universal algebra

- Important lesson: Do NOT quotient out the gauge symmetries naively!
- \diamond Chain complex of U(1)-gauge fields on $U \in \mathbf{Loc}_{\textcircled{\textcircled{o}}}$

$$\mathcal{F}_{\circledcirc}(U) \, := \, \left(\, \Omega^1(U) \, \overset{\frac{1}{2\pi \mathrm{i}} \, \mathrm{d} \, \mathrm{log}}{\longleftarrow} \, C^{\infty}(U, U(1)) \, \, \right)$$

 \diamond Smooth Pontryagin dual chain complex of observables on $U \in \mathbf{Loc}_{ extstyle \mathbb{C}}$

$$\mathcal{O}_{\odot}(U) := \left(\Omega_{c}^{m-1}(U) \xrightarrow{d} \Omega_{c;\mathbb{Z}}^{m}(U) \right)$$

 \diamond Extension to $M \in \mathbf{Loc}$ via homotopy colimit/homotopy left Kan extension

$$\mathcal{O}(M) := \frac{\mathsf{hocolim}\Big(\ \mathbf{Loc}_{\textcircled{\mathbb{C}}}/M \xrightarrow{Q_M} \mathbf{Loc}_{\textcircled{\mathbb{C}}} \xrightarrow{\mathcal{O}_{\textcircled{\mathbb{C}}}} \mathbf{Ch}(\mathbf{Ab}) \ \Big)}$$

Theorem [Benini, AS, Szabo]

For every $M \in \mathbf{Loc}$, $\mathcal{O}(M)$ is weakly equivalent to dual Deligne complex on M. In particular, it contains observables for flat connections and respects magnetic charge quantization of gauge theories!

Bird's-eye view on homotopical AQFT

- ♦ Higher structures in gauge theory: [cf. Gwilliam's talk]
 - 'Spaces' of gauge fields are not usual spaces, but higher spaces called stacks.
 - Consequently, observable 'algebras' for gauge theories are not conventional algebras, but higher algebras, e.g. differential graded algebras.
- ⋄ To formalize quantum gauge theories, we develop

homotopical AQFT := AQFT + homotopical algebra

- 'Def:' A homotopical AQFT is an assignment $\mathfrak{A}:\mathbf{Loc}\to\mathbf{dgAlg}$ of differential graded algebras (or other higher algebras) to spacetimes, satisfying
 - 1. functoriality, causality and time-slice (possibly up to coherent homotopies);
 - 2. local-to-global property, i.e. $\mathfrak A$ is homotopy left Kan extension of $\mathfrak A|_{\mathbf{Loc}_{\odot}}$.
 - Our results:
 - Global observables via homotopy left Kan extension [Benini,AS,Szabo]
 - Toy-models via orbifoldization (homotopy invariants) [Benini,AS]
 - Yang-Mills stack and stacky Cauchy problem [Benini, AS, Schreiber]
 - Towards a precise definition in terms of operads [Benini, AS, Woike]

NB: BRST/BV formalism of [Fredenhagen, Rejzner] should provide examples.

The operadic AQFT program

M. Benini, S. Bruinsma, AS and L. Woike

Categories of AQFTs: General perspective

- **Input data:** (so that we can talk about QFTs)
 - Category C ('spacetimes') with subset $W \subseteq \operatorname{Mor} \mathbf{C}$ ('Cauchy morphisms')
 - Orthogonality $\bot \subseteq \operatorname{Mor} \mathbf{C}_t \times_t \operatorname{Mor} \mathbf{C}$ ('causally disjoint' $(c_1 \to c \leftarrow c_2) \in \bot$)
 - Target category M (bicomplete closed symmetric monoidal)

Def: The category of M-valued AQFTs on (C, W, \bot) is the full subcategory $\operatorname{\mathbf{qft}}(\mathbf{C},W,\perp) \subseteq \mathbf{Mon_M^C}$ of functors $\mathfrak{A}:\mathbf{C} \to \mathbf{Mon_M}$ satisfying

- 1. W-constancy: For all $f \in W$, $\mathfrak{A}(f)$ is isomorphism.
- 2. \perp -commutativity: For all $f_1 \perp f_2$, the following diagram commutes

$$\begin{array}{c} \mathfrak{A}(c_1) \otimes \mathfrak{A}(c_2) \xrightarrow{\mathfrak{A}(f_1) \otimes \mathfrak{A}(f_2)} \mathfrak{A}(c) \otimes \mathfrak{A}(c) \\ \mathfrak{A}(f_1) \otimes \mathfrak{A}(f_2) \downarrow & \downarrow \mu_c^{\mathrm{op}} \\ \mathfrak{A}(c) \otimes \mathfrak{A}(c) \xrightarrow{\mu_c} \mathfrak{A}(c) \end{array}$$

Thm: Localization induces equivalence $\mathbf{qft}(\mathbf{C}, W, \bot) \cong \mathbf{qft}(\mathbf{C}[W^{-1}], \emptyset, L_*(\bot)).$

In This means that W-constancy can be hard-coded as a structure.

NB: The relevant categories are $\mathbf{QFT}(\mathbf{C}, \perp) := \mathbf{qft}(\mathbf{C}, \emptyset, \perp)$.

AQFTs are algebras over a colored operad

- Operads capture abstractly the operations underlying algebraic structures.
- **Example:** Associative and unital algebras

Theorem [Benini, AS, Woike]

For every (C, \perp) , there exists an Ob(C)-colored operad $\mathcal{O}_{(C,\perp)}$ whose category of algebras is canonically isomorphic to the category of AQFTs on (C, \perp) , i.e.

$$\mathbf{Alg}(\mathcal{O}_{(\mathbf{C},\perp)})\,\cong\,\mathbf{QFT}(\mathbf{C},\perp)$$

In This means that \perp -commutativity can be hard-coded as a structure by using colored operads. \rightsquigarrow Very useful for universal constructions, see next slide.

Rem: Precise operadic definition of homotopical AQFT:

homotopical AQFT := $\mathcal{O}_{(\mathbf{C},\perp)}$ -algebra + local-to-global property

A whole zoo of universal constructions

- \diamond Main observation: The assignment of AQFT operads $(\mathbf{C}, \perp) \mapsto \mathcal{O}_{(\mathbf{C}, \perp)}$ is functorial $\mathcal{O}: \mathbf{OrthCat} \to \mathbf{Op}(\mathbf{M})$ on the category of orthogonal categories.
- \Rightarrow For every orthogonal functor $F:(\mathbf{C},\perp_{\mathbf{C}}) \to (\mathbf{D},\perp_{\mathbf{D}})$ we obtain adjunction

$$\mathbf{QFT}(\mathbf{C}, \perp_{\mathbf{C}}) \xrightarrow[F^*]{F_!} \mathbf{QFT}(\mathbf{D}, \perp_{\mathbf{D}})$$

- Because the W-constancy and \bot -commutativity axioms are hard-coded as structures in our operads, these adjunctions always produce AQFTs.
- Examples:
 - 1. \perp -Abelianization: $id_{\mathbf{C}}: (\mathbf{C}, \emptyset) \to (\mathbf{C}, \perp)$ induces $\mathbf{Mon_{\mathbf{M}}^{\mathbf{C}}} \xleftarrow{\mathrm{Ab}} \mathbf{QFT}(\mathbf{C}, \perp)$
 - 2. W-constantification: $L: (\mathbf{C}, \perp) \to (\mathbf{C}[W^{-1}], L_*(\perp))$ induces

$$\mathbf{QFT}(\mathbf{C},\bot) \ \xleftarrow{L_!} \ \mathbf{QFT}(\mathbf{C}[W^{-1}],L_*(\bot))$$

3. Local-to-global: Full orthogonal subcat $j:(\mathbf{C},j^*(\bot)) \to (\mathbf{D},\bot)$ induces

$$\mathbf{QFT}(\mathbf{C},j^*(\bot)) \ \xleftarrow{j!} \ \mathbf{QFT}(\mathbf{D},\bot)$$

Comparison to Fredenhagen's universal algebra

- ⋄ Fredenhagen's universal algebra ignores the ⊥-commutativity axiom.
- Comparison via diagram of adjunctions (square of right adjoints commutes)

I heorem [Benini, AS, Woike]

- 1. Let $\mathfrak{A} \in \mathbf{QFT}(\mathbf{Loc}_{\mathbb{C}}, j^*(\bot))$ be such that $\mathrm{Lan}_j \mathrm{Forget} \mathfrak{A}$ is \bot -commutative. Then $\operatorname{Lan}_i\operatorname{Forget}\mathfrak{A}\cong\operatorname{Forget}j_!\mathfrak{A}$.
- 2. Lan_iForget \mathfrak{A} is \perp -commutative over $M \in \mathbf{Loc}$, for all \mathfrak{A} , if and only if for all causally disjoint $f_1: U_1 \to M \leftarrow U_2: f_2$ with $U_1, U_2 \in \mathbf{Loc}_{\odot}$ there exists

Rem: Property in 2. violated for disconnected M. Open question: Connected M?

A characterization theorem for boundary AQFTs

M. Benini, C. Dappiaggi and AS (to appear soon)

Universal boundary extensions of AQFTs

- \diamond Spacetime M with timelike boundary
- $\mathbf{QFT}(\mathrm{int}M)$ on causally compatible interior regions
- $\mathbf{QFT}(M)$ on all causally compatible regions

Universal boundary extension (no choice of boundary conditions needed!)

$$\mathbf{QFT}(\mathrm{int}M) \xleftarrow{\mathrm{ext}} \mathbf{QFT}(M)$$

 \diamond Given $\mathfrak{B} \in \mathbf{QFT}(M)$, the counit of the adjunction provides comparison map

$$\epsilon_{\mathfrak{B}}: \operatorname{ext}\operatorname{res}\mathfrak{B}\longrightarrow\mathfrak{B}$$

Theorem [Benini, Dappiaggi, AS]

 $\epsilon_{\mathfrak{B}}: \operatorname{ext}\operatorname{res}\mathfrak{B}/\ker\epsilon_{\mathfrak{B}}\to\mathfrak{B}$ is isomorphism if and only if \mathfrak{B} is generated from the interior, i.e. every $\mathfrak{B}(V)$ is generated by $\mathfrak{B}(V_{\mathrm{int}})$, for all interior regions $V_{\mathrm{int}} \subseteq V$.

Rem: Implies that every such $\mathfrak B$ may be described by two independent data:

- 1. A theory on the interior $\mathfrak{A} \in \mathbf{QFT}(\mathrm{int}M)$
- 2. An ideal $\mathfrak{I} \subseteq \operatorname{ext} \mathfrak{A}$ that vanishes on the interior \Leftarrow boundary conditions

Happy Birthday, Klaus!

Klaus secretly doing homotopy theory in the black forest! (MFO Mini-Workshop: New interactions between homotopical algebra and quantum field theory)