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I. Some interesting questions from non-equilibrium physics...













Setup – quasi-local C! algebras

Consider hypercubic lattice ZD, on each site a copy of CN . Space of local observablesO is
completed to C!-algebraA. Natural translation isomorphism A !→ ιx(A) = A(x). With
h ∈ O a local observable, homogeneous Hamiltonian of density h has formal expression

H =
∑

x∈ZD

h(x).

With B(n) “ball” of radius n centered at origin, partial sums areH(n) =
∑

x∈B(n) h(x),

and τHt (A) = limn→∞ eiH
(n)tAe−iH(n)t (A ∈ O), which extends continuously toA.

A (β, H)-KMS state ω satisfy ω(AB) = ω(τH−iβ(B)A). An example is given by the
infinite-volume limit (for A ∈ O, extended toA by continuity)

ωH
β (A) = lim

n→∞

TrH(n)

(
exp

[
−βH(n)

]
A
)

Tr
(
exp

[
−βH(n)

])

[Araki 1969; ... For textbooks see: Bratteli, Robinson 1997]



Thermalization in extended systems

If the large-time limit limt→∞ Ψ(τHt (A)) exists (relaxation),
in what situations does it equal ω(A) for some (β, H)-KMS state ω (thermalization)?

[Some recent rigorous results: Reimann, Kastner 2012; Riera, Gogolin, Eisert 2012; Müller, Adlam,

Masanes, Wiebe 2015. Reviews: Polkovnikov, Sengupta, Silva, Vengalattore 2011; Yukalov 2011;

Gogolin, Eisert 2015; Eisert, Friesdorf, Gogolin 2015; BD 2017].



Eigenstate thermalization hypothesis (simplified version)

Denote |Ψn〉 : n = 1, 2, 3, . . . a sequence ofH(n)-eigenstates in balls B(n). Assume that
the following limit exists and equal limn→∞〈Ψn|h|Ψn〉 = e, where h is the density ofH .

In what situation does the large-volume limit give limn→∞〈Ψn|A|Ψn〉 = ω(A)

for some (β, H)-KMS state ω?

That is:

“In Hamiltonian eigenstates |Ψ〉 of a thermodynamic system, withH|Ψ〉 = E|Ψ〉,
the average 〈Ψ|A|Ψ〉 is a thermal average.”

[Jensen, Shankar 1985; Deutsch 1991; Srednicki 1994; Rigol, Dunjko, Olshanii 2008]

Or perhaps more generally:

“Any suitableH-stationary state ω is a (β, H)-KMS state.”



Steady states and the partitioning protocol

LetΨ = Ψl ⊗Ψr be the tensor product of two states, one acting on the left subalgebra
Al = A(−∞,0)×ZD−1 , the other on the right subalgebraAr = A[0,∞)×ZD−1 .

If the large-time limit limt→∞ Ψ(τHt (A)) exists (relaxation),
in what situations does it generate a non-equilibrium steady state ω

(ω ◦ τHt = ω, and ω is not invariant under time reversal)?

[Spohn, Lebowitz 1977; Ruelle 2000; Bernard, BD 2012; Hollands, Longo 2016;Castro-Alvaredo, BD,

Yoshimura 2016; Bertini, Collura, De Nardis, Fagotti 2016; Review (physics): Bernard, BD 2016]



A unifying idea

“The large time limit is aH-stationary state ω that is a (β, Q)-KMS state
for some local enoughQ that commutes withH .”

LetQi be local charges,Qi =
∑

x∈ZD qi(x) with qi ∈ O

that are conserved, [H, qi] ∈ ⊕x∈ZD im(ιx − 1) (that is, formally
∑

x[H, qi(x)] = 0).

Then, formally, the stationary state “density operator”, in all the above cases, has the form

exp

[

−
∑

i

βiQi

]

This maximizes entropy under the constraints of the average values ofQi.



• Thermalization. If the only local conserved charge isH itself, then the above idea
implies thermalization,

exp [−βH]

• Flows in CFT. Take the example of CFT in dimension D (not a quantum lattice so outside
our setup, but similar ideas apply...). Natural local conserved charges are the
HamiltonianH and the momenta %P . Then

exp
[
−βH + %ν · %P

]
.

Stationary states are Lorentz boosts of thermal states.
[Bernard, BD 2012; Bhaseen, BD, Lucas, Schalm 2015; Hollands, Longo 2016]



Generalized thermalization and generalized Gibbs ensembles

But what if the system is integrable? There are infinitely manyQi...

The state corresponding to the formal density operator

exp

[

−
∞∑

i=1

βiQi

]

is called a generalized Gibbs ensemble (GGE). The process of reaching a GGE is
generalized thermalization.
[Jaynes 1957; Rigol, Muramatsu, Olshanii 2006; Rigol, Dunjko, Yurovsky, Olshanii 2007; Review:

Essler, Fagotti (2016)]



In fact, it was found in some examples that quasi-local conserved charges whose densities
have exponentially decaying tails, must be included in the GGE expression.
[Ilievski, Medenjak, Prosen, Zadnik 2013 – 2016; Pereira, Pasquier, Sirker, Affleck 2014; Ilievski, De

Nardis, Wouters, Caux, Essler, Prosen 2015]

Exponentially decaying tails? Perhaps:

|| [qi(x), A(y)] || < C||A|| e− dist(x,y)/ξ ∀A ∈ O{0}



GGEs are at the basis of a great many studies of non-equilibrium physics in closed integrable
quantum systems. This includes “quantum quenches”, as well as (more recently) transport in
inhomogeneous cases through the notion of generalized hydrodynamics [Castro-Alvaredo, BD,
Yoshimura 2016; Bertini, Collura, De Nardis, Fagotti 2016].

GGEs form an infinite-dimensional manifold of states.
How to characterize this manifold? How is the formal sum

∑
i βiQi converging?

What conditions guarantee generalized thermalization? ...



II. A generalized thermalization theorem

Based on BD, Commun. Math. Phys. 351, 155 (2017)



Instead of looking to define and characterize (β, Q)-KMS states for appropriately quasi-local
conserved chargesQ, I use a different method.

Remark that, thanks to de−βH/dβ = −He−βH , we have

−
d

dβ
ωH
β (A) =

∑

x∈ZD

[
1

2
ωH
β

(
h(x)A+Ah(x)

)
− ωH

β (h)ωH
β (A)

]

This can be used to define (β, H)-KMS states for high enough temperatures (when there is
unicity). This is what I generalize to charges with extended locality properties.



Clustering and integrated correlation functions

Clustering condition: at large distances, correlations between local observables decay fast
enough, faster than distance−D (recall D = dimension of space).

Definition. Let ω be a state. We say that ω is sizably clustering if there exist ν, a > 0 and
p > D such that for every ' > 0 and every A,B ∈ O of sizes |A|, |B| < ', we have

∣∣ω(AB)− ω(A)ω(B)
∣∣ ≤ ν'a ||A|| ||B|| dist(A,B)−p.

(With some more general function ν(") in place of ν"a the state is simply clustering.)

This guarantees finiteness of integrated correlation functions (clustering is sufficient):

〈〈A,B〉〉ω :=
∑

x∈ZD

[
1

2
ω
(
A!(x)B +BA!(x)

)
− ω(A!)ω(B)

]



The Hilbert space of correlation functions

The sesquilinear form 〈〈·, ·〉〉 is non-negative onO. It has a null space N̂ω that contains
im(ιx − 1). Taking the quotient L̂ω = O/N̂ω we obtain a non-degenerate inner product.
We can thus extends L̂ω to a Hilbert space Ĥω (similar to GNS construction).



High-temperature Gibbs states

Time-evolved high-temperature Gibbs states are uniformly sizably clustering.

Let ωH0
β and τHt be associated to possibly different local Hamiltonians.

Theorem. There exists β∗ > 0 [Kliesch, Gogolin, Kastoryano, Riera, Eisert 2014] (with β∗ = ∞

in one dimension D = 1 [Araki 1969]) such that the sizably clustering property holds uniformly
for ωH0

β ◦ τHt in every compact subset of {|β| < β∗, t ∈ R}.

[Araki 1969; Lieb, Robinson 1972; Bravyi, Hastings, Verstraete 2006; Kliesch, Gogolin, Kastoryano,

Riera, Eisert 2014; BD 2016]



Pseudolocality
[Prosen 1998, 1999, 2011; BD 2017]

A pseudolocal charge (conserved or not) is the limit of a sequence of observablesQn,
supported on balls B(n) centered at the origin and of growing radius n, with in particular the

condition that their second cumulants diverge at most like the volume.

Three conditions (assume without loss of generality ω(Qn) = 0) :

I. Volume growth. There exists γ > 0 such that ω({Q!
n, Qn}) ≤ γnD for all n > 0.

II. Limit action. For every A ∈ O, Q̂ω(A) := limn→∞
1
2ω({Q

!
n, A}) exists in C.

III. Bulk homogeneity. There exists 0 < k < 1 such that for every A ∈ O,

lim
n→∞

max
x,y∈B(kn)

|ω({Q!
n, A(x)})− ω({Q!

n, A(y)})| = 0.

The limit action Q̂ω is referred to as a pseudolocal charge with respect to ω. We denote the
linear space of pseudolocal charges with respect to ω as Q̂ω .



A subset of pseudolocal charges is that of local charges, obtained from sequences of
partial sums,

n !→ Qn =
∑

x∈B(n)

A(x)

for any A ∈ O. The associated limit action is the correlation function,

Q̂ω(B) =
∑

x∈ZD

(
1

2
ω({A(x), B})− ω(A)ω(B)

)
= 〈〈A,B〉〉ω

Theorem. [BD 2017] Let ω be a clustering state onO. There exists a bijection
D̂ : Q̂ω → Ĥω such that, for everyQω ∈ Qω and every A ∈ O,

Qω(A) = 〈〈D̂(Qω), A〉〉ω.

In particular, Q̂ω can be extended to a continuous linear functional on Ĥω .



Quasilocal charges [Ilievski, Prosen 2013], whose densities have exponentially decaying
tails, are also pseudolocal charges.

A clustering property holds (similar to an asymptotic differentiation property) [BD 2017]:

lim
dist(B,C)→∞

Q̂ω(BC) = Q̂ω(B)ω(C) + ω(B)Q̂ω(C)



A larger family of states: pseudolocal states
[BD 2017]

We extend the family of high-temperature Gibbs states using pseudolocal charges. Since
(formally) de−βH/dβ = −He−βH , we have

−
d

dβ
ωH
β (A) = 〈〈h,A〉〉ωH

β
= ĤωH

β
(A)

We interpret ĤωH
β
as a tangent vector at the “point” ωH

β , and this is a “flow equation”

along a curve that connects ωH
β to the infinite-temperature state TrA at β = 0.

A pseudolocal state is a state at the end-point of a curve connecting it to the
infinite-temperature state, and whose tangent is determined by pseudolocal charges.



The integrated version is more useful in practice:

Definition. Let {ωs : s ∈ [0, 1]} be a one-parameter family of uniformly sizably clustering
states, with ω1 = ω and ω0 = TrA. If there exists a one-parameter family
{Q̂s ∈ Q̂ωs

: s ∈ [0, 1]} of uniformly bounded pseudolocal charges such that, for every
A ∈ O, the function s !→ Q̂s(A) is Lebesgue integrable on [0, 1] and

ωs(A) = TrA(A) +

∫ s

0
ds′ Q̂s′(A),

then we say that ω is a pseudolocal state.

Theorem. High-temperature Gibbs states are pseudolocal states.

Theorem. If ω is a pseudolocal state and τHt is a time evolution associated to a local
HamiltonianH , then ω ◦ τHt is a pseudolocal state for all t ∈ R.



Stationarity and conserved charges

We denote

[H,A] =
∑

x∈ZD

[h(x), A]

(note: the sum is finite!)

A clustering state is stationary if ω([H,A]) = 0 for all A ∈ O.

In a stationary state, the condition that a pseudolocal charge Q̂ω be conserved is simply
Q̂ω([H,A]) = 0 for all A ∈ O.

(Intuitively, ω(Q[H,A]) = ω([Q,H]A) = 0.)



Generalized Gibbs ensembles

We then have a natural definition of generalized Gibbs ensembles:

A generalized Gibbs ensemble with respect toH is a pseudolocal state whose entire flow is
stationary with respect toH .

Definition. [BD 2017] A GGE with respect toH is a pseudolocal state ω with the property
that for almost all s ∈ [0, 1], we have ωs([H,A]) = 0 and Q̂s([H,A]) = 0 for allA ∈ O.

Intuitively and formally, the GGE “density operator” would be a product of path-ordered exponentials
of pseudolocal conserved charges:

ρGGE =
←−−−
P exp

∫
1

0

dsQ(s) ·
−−−→
P exp

∫
1

0

dsQ(s) instead of ρGGE = e−
∑

βiQi



Generalized thermalization

Under conditions of uniform clustering and existence of large-time dynamical response
functions, the large-time limit of a time-evolved pseudolocal state exists and is a GGE.

Theorem. [BD 2017] Let τHt be an evolution dynamics, and let ω be a pseudolocal state with
flow {ωs : s ∈ [0, 1]}. Suppose

(a) {ωs ◦ τHt : (s, t) ∈ [0, 1]× [0,∞)} is uniformly sizably clustering, and

(b) for every A,B ∈ O and almost all s ∈ [0, 1], the limit limt→∞ 〈〈τHt (A), B〉〉ωs

exists in C.

Then the limit ωsta := limt→∞ ω ◦ τHt exists ()-weakly) and is a GGE with respect to the
evolution HamiltonianH .



Integrability vs non-integrability?

What about thermalization in non-integrable model? We need a “definition” of
non-integrability.

Consider a local HamiltonianH . It is completely mixing if it does not possess conserved
pseudolocal charges other than scalar multiples of itself.

Definition. [BD 2017] A local hamiltonianH is completely mixing if for every stationary
clustering state ω, the condition that Q̂ω be conserved (Q̂ω([H,A]) = 0 for allA ∈ O)

implies Q̂ω = λĤω for some λ ∈ C.



A re-thermalization theorem

A pseudolocal state whose entire flow is stationary with respect to a completely mixing local
Hamiltonian must be a high-temperature Gibbs state with respect to this Hamiltonian.

The inverse temperature is

β = −
∫ 1

0
dsλ(s)

where λ(s) is the proportionality constant in Q̂s = λ(s)Ĥωs
.

This implies a re-thermalization theorem under the “quantum quench”H0 → H

Theorem. Suppose

(a) {ωH0
s ◦ τHt : (s, t) ∈ [0,β]× [0,∞)} is uniformly sizably clustering,

(b) for every A,B ∈ O and almost all s ∈ [0,β], the limit limt→∞ 〈〈τHt (A), B〉〉
ω

H0
s

exists in C, and

(c) theH is completely mixing.

Then ωsta
β = limt→∞ ωH0

β ◦ τHt is a high-temperature Gibbs state with respect toH .



Geometry and the second law of thermodynamics

The Hilbert space structure suggests an infinite-dimensional Riemannian manifold of
quantum states. Is there a aelation between geometry and (non-equilibrium)
thermodynamics?

Consider the distance from a pseudolocal state ω to the infinite-temperature state TrA: the
minimal length over all paths connecting TrA to ω,

Dist(ω) = inf






∫ 1

0
ds ||Q̂s|| :

s !→ Q̂s ∈ Q̂ωs
tangent to s !→ ωs

ω0 = TrA, ω1 = ω






If ωsta = limt→∞ ω ◦ τHt exists in the sense of generalized thermalization theorem, then

Dist(ω) ≥ Dist(ωsta)

That is, there is a preorder on the set of pseudolocal states determined by infinite-time
evolution⇒ second law of thermodyanmics.



A “fluctuation-dissipation” theorem

Commutators are response functions,

iω([H,A])

while anti-commutators are correlation functions,

〈〈h,A〉〉ω.

A relation between response functions and correlation functions is a fluctuation-dissipation
theorem.

There exists a continuous linear mapMω : Ĥω → Ĥω such that

iω([H,A]) = 〈〈Mω(h), A〉〉ω

for all A ∈ O.



Conclusions

• Framework, directly in infinite systems, for non-equilibrium quantum dynamics and for
generalized Gibbs ensembles, based on pseudolocal charges. Suggests other results,
such as “If all Rényi entropies satisfy a volume law, then the state is a pseudolocal state”
⇒ ETH...

• Are GGEs, as defined here, really some (β, Q)-KMS state for appropriate β, Q? How
are they related to standard structures of integrability?

• Similar framework for IQFT? Connection with scattering states?

• Use similar framework in other non-equilibrium situations? E.g. non-homogeneous initial
states, non-equilibrium steady states? Local GGEs [Castro-Alvaredo, BD, Yoshimura 2016;
Bertini, Collura, De Nardis, Fagotti 2016], description in terms of the quasi-particles of Bethe
ansatz?


