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Introduction

Big problem for Quantum Gravity: Lack of visible effects

=⇒ Ansätze are tested by consistency, but not by observations.

Consistency requires

Internal consistency

−→ Classical General Relativity

−→ Quantum Field Theory on Lorentzian manifolds

At present, none of the existing approaches is known to fulfill these
requirements.

Direct approach: perturbative Quantum Gravity
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Claim:

Perturbative quantum gravity is consistent as an effective
quantum field theory.

It reproduces General Relativity and Quantum Field Theory on
curved spacetime in appropriate limits.

In addition, it has already been tested via cosmological
perturbation theory in Cosmic Microwave Background.

Problems of perturbative Quantum Gravity:

Nonrenormalizability

Existence of local observables?

What happens with spacetime after quantization?
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Tentative answers:

Renormalization at every order is well defined, hence
perturbative Quantum Gravity is an effective field theory
whose validity for small energies depends on the size of the
new coupling constants occuring in higher orders. In addition
there are indications that Quantum Gravity might be
asymptotically safe (Reuter et al.).

Local observables in the sense of relative observables (Rovelli)
can be defined (see later).

Spacetime after quantization is defined in terms of
coordinates which are quantum fields.
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Quantum Field Theory on curved spacetimes

Plan of the talk: A review of Quantum Field Theory on curved
spacetimes including perturbative quantum gravity and comparison
with cosmological perturbation theory.
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Algebraic quantum field theory is the appropriate framework for
quantum field theory on curved spacetime (Kay 1979).

Vacuum state has to be replaced by a distinguished class of states
(Hadamard states) (Kay 1983).

Conjecture: All these states are locally quasiequivalent (Kay 1983)
(Proof by Verch 1992).

Singularity structure of Hadamard states (Kay and Wald)(1989)

Kay’s conjecture: Positivity excludes spacelike singularities
(Gonnella-Kay 1989).
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Proof by Radzikowski (wave front sets, microlocal spectrum
condition)(1993)

Begin of modern QFT on CFT, combining AQFT and microlocal
analysis

We start with a globally hyperbolic spacetime M = (M, g) and
illustrate the definition of quantum field theories on M by the
example of a scalar field.

Space of field configurations: E(M) set of smooth functions

Observables: Functionals F : E(M)→ C
Dynamics: Lagrangian L
Algebraic structure: For each ϕ0 ∈ E(M) we expand the
Lagrangian around ϕ0 up to second order and obtain a splitting

L(ϕ0 + ψ) = L0(ψ) + LI (ψ)

into a quadratic (free) part and the remainder (interaction).Klaus Fredenhagen Cosmological Perturbation Theory and Perturbative Quantum Gravity
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Algebraic structure for the free part:

∆ = retarded minus advanced Green’s function of the field equation

Splitting of ∆:
∆ = 2ImH

H (Hadamard function) bisolution of positive type with one sided
wave front set (locally positive frequencies). (On Minkowski space
an example is the Wightman 2-point function ∆+.)

WF∆ = {(x , y ; k , k ′), x , y ∈ M, k ∈ T ∗xM, k ′ ∈ T ∗xM|(k , k ′) 6= 0,

∃ Nullgeodäte γ von x to y with k , k ′ coparallel to γ̇ and

k ′ + Pγk = 0, Pγ parallel transport along γ}

WFH = {(x , y ; k, k ′) ∈WF∆|k ∈ V+} ,
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Product of observables (Wick’s Theorem)

(F ? G )(ϕ) =
∑ 1

n!
〈F (n)(ϕ),H⊗nG (n)(ϕ)〉

(F (n) nth functional derivative)

Example:
ϕ(x) ? ϕ(y) = ϕ(x)ϕ(y) + H(x , y)

ϕ(x)n

n!
?
ϕ(y)m

m!
=

min(n.m)∑
k=0

ϕ(x)(n−k)

(n − k)!

H(x , y)k

k!

ϕ(y)(m−k)

(m − k)!

(Wick-Theorem)
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Time ordering operator (unrenormalized):

TF (ϕ) =
∑ 1

2nn!
〈H⊗nF ,F (2n)〉

HF = H + i∆adv Feynman propagator associated to H.

Renormalization: Define T on multilocal functionals.

Time ordered product ·T

F ·T G = T (T−1F · T−1G )

· pointwise (classical) product F · G (ϕ) = F (ϕ)G (ϕ)

Examples:
ϕ(x) ·T ϕ(y) = ϕ(x)ϕ(y) + HF (x , y)

ϕ(x)2

2
·T
ϕ(y)2

2
=
ϕ(x)2

2

ϕ(y)2

2
+ϕ(x)ϕ(y)HF (x , y) +

HF (x , y)2
ren

2
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Time ordered exponential

expT F = T exp(T−1F )

Adding an interaction V (inverse w.r.t. the ?-product):

RV (F ) = (expT V )−1 ? (expT (V ) ·T F )

Bogoliubov’s formula (RV retarded Mœller map)

?-product of the interacting theory:

F ?V G = R−1
V (RV (F ) ? RV (G ))

Full theory obtained by inserting V = LI .
Perturbative agreement (Hollands-Wald): Theory does not depend
on the choice of ϕ0 (in the sense of formal power series).
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Application to gravity

Configuration space: E(M) set of globally hyperbolic metrics

Problem: linearized equation of motion not hyperbolic

Solution: gauge fixing via Batalin-Vilkovisky formalism

Algebra of observables constructed as a cohomology class of the
BRST operator

Difficulty: Nonexistence of local observables

Solution: Relative observables (Rovelli)

Use physical fields (e.g. curvature scalars) as coordinates

Works on generic backgrounds
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Typical observables: X a
Γ , a = 1, . . . 4 scalar fields, local functionals

of the configuration Γ = (g , ϕ, . . .) and equivariant, i.e. for a
diffeomorphism χ acting on Γ

X a
χ∗Γ = X a

Γ ◦ χ .
Assume that for a given background configuration
Γ0 = (g0, ϕ0, . . .) the map

XΓ0 : x 7→ (X 1
Γ0

(x), . . . ,X 4
Γ0

(x)) ∈ R4

is injective.

Then let for Γ near to Γ0

αΓ = X−1
Γ ◦ XΓ0

We then set for any other equivariant scalar field AΓ

AΓ = AΓ ◦ αΓ
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Thus we obtain gauge invariant fields

AΓ(x) := AΓ(αΓ(x)) .

Hence gauge invariance is obtained by evaluating the field at a
point which is shifted in a Γ-dependent way.

In perturbation theory the observables enter only by their Taylor
expansion around the background Γ0. Up to first order

AΓ0+δΓ = AΓ0 + 〈δAΓ

δΓ
(Γ0), δΓ〉+

∂AΓ0

∂xµ
〈
δαµΓ
δΓ

(Γ0), δΓ〉 .

The last term on the right hand side is necessary in order to get
gauge invariant fields (up to 1st order). We find

δαµΓ
δΓ

(Γ0) = −

((
∂XΓ0

∂x

)−1
)µ

a

δX a
Γ

δΓ
(Γ0) .

Klaus Fredenhagen Cosmological Perturbation Theory and Perturbative Quantum Gravity



Introduction
Quantum Field Theory on curved spacetimes

Application to gravity
Application to cosmology

Conclusions

Observations:

If AΓ vanishes on the background, then it is gauge invariant at
first order.

If AΓ0 depends only on 1 variable, the correction involves only
the field

xµ1 = −

((
∂XΓ0

∂x

)−1
)µ

a

〈
δX a

Γ

δΓ
(Γ0), δΓ〉

If AΓ0 = 0, the second order correction is

2∂µ〈
δAΓ

δΓ
(Γ0), δΓ〉 · xµ1

and involves in general all coordinates.
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Application to cosmology

We observe that the expansion of physical observables contains
contributions of the physical coordinates expanded around the
background.

Inflationary scenario: gravity, coupled to a minimally coupled scalar
field ϕ

Difficulty: background not generic, therefore not sufficiently many
physical coordinates

Solution: use ϕ as time coordinate and add auxiliary fields
mimicking fields of the standard model

Toy model: 3 minimally coupled scalar fields X a, a = 1, 2, 3.
Background

g0 = a2(τ)(dτ2 − dx2) , ϕ0 = φ , X a
0 = εxa
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Comparison with cosmological perturbation theory:

δg = a2

(
−2A (∂iB + Vi )

t

−∂iB + Vi 2(∂i∂jE + δijD + ∂(iWj) + Tij)

)
Interesting observables:

Spatial curvature, defined as curvature of the metric tensor

h = g − dϕ⊗ dϕ

g−1(dϕ, dϕ)

On surfaces of constant ϕ, h is nondegenerate and Riemannian.

Klaus Fredenhagen Cosmological Perturbation Theory and Perturbative Quantum Gravity



Introduction
Quantum Field Theory on curved spacetimes

Application to gravity
Application to cosmology

Conclusions

Scalar spatial curvature in linear order

R
(ϕ)
1 =

4H
φ′

∆µ

H = aH (conformal Hubble parameter), φ′ = dφ
dτ ,

µ = δϕ− φ′

HD Mukhanov-Sasaki variable

Here no 1st order correction, since the 0th order vanishes.
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Lapse function (up to 1st order)

N = |g−1(dϕ, dϕ)|−
1
2 = − a

φ′
+

a

φ′2
(δϕ′ − Aφ′)

Correction term

N = N +
a

φ′2

(
φ′′

φ′
−H

)
δϕ

On shell one obtains

N = − 2a

φ′3
∆Ψ

Ψ Bardeen potential (analogue of the Newtonian potential)

Ψ = A− (∂τ +H)(B + E ′)
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Fluctuations in the microwave background are explained by the
Sachs-Wolfe effect:

δT

T
=

1

3
Ψ

where Ψ in 1st order is considered as a quantum field.

It involves besides the inflaton field also gravitational degrees of
freedom.
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Conclusions

Perturbative quantum gravity provides a consistent picture of
quantum fluctuations around a classical background.

In linear order it reproduces cosmological perturbation theory.

In principle, computations at every order are possible, but
involve (due to the nonrenormalizabilty) in each order a finite
number of new parameters which have to fixed by experiment.

The formulas at higher order involve the used coordinates
which should be considered as physical fields . For a realistic
computation they should be related to the fields of the
standard model.
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