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» The Wightman and Green functions are one of the most important objects in the
quantum field theory in the Minkowski space.

» The perturbative definition of the Green functions in a large class of models was
given by Lowenstein (1976) and Breitenloher Maison (1977).

» Using the Epstein-Glaser approach both the Wightman and Green functions can be
defined. v~ One has to show the existence of the weak adiabatic limit.

» The existence of the weak adiabatic limit has been proved so far in purely massive
models, the quantum electrodynamics and the massless ¢* theory.

Main result

The existence of the weak adiabatic limit in a large class of models in the Minkowski space
including all models with the interaction vertices of the canonical dimension equal 4.

= The perturbative construction of the Wightman and Green functions.

=> The definition of a Poincaré invariant functional on the algebra of the interacting fields.
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Plan of the talk

Axioms of the time-ordered products.
Definition of the Wightman and Green functions in the Epstein-Glaser approach.

Known and new results about the existence of the adiabatic limit.

e

Outline of the proof.
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Epstein-Glaser approach — the notation

>

>

>

Scalar, spinor and vector fields.
Massive or massless fields.

Only renormalizable models.

The notation:

>

>

The basic generators: Ai, ..., Ap.

The generators: 0“A;, « - a multi-index

The algebra of the symbolic fields =the free unital commutative algebra generated by 09A;.
Monomials: A" = Hiﬂa((')“Ai)T(i’“).

The super-quadri-index: 7 : {1,...,p} x N* 3 (4,a) — 7(i,a) € N.

Polynomials: B =Y a,A", a, €C.

Sub-polynomials: B®) = > (Ti—!s)!arA’"’S, s - super-quadri-index.

Wick polynomials: :B(z):.
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Epstein-Glaser approach — the time-ordered products

T(Bi,...,Bu)(z1,...,20) = T(Bi(z1),- .., Bu(zn)) : S(R*™) — L(Do)

1. T(¥) =1, T(B(z))=:B(z): and
T(Bi(x1), ..., Bn(zn), l(znt1)) = T(Bi(z1),- .., Bn(zn)).

2. Symmetry: T(Bl(l‘l), Cey Bn(In)) = T(Bﬂ-(l)(mﬂ-(l)), e, Bﬂ(n)(l‘ﬂ(n))).

3. Translational covariance:
U(a) T(Bi(z1), ..., Bn(z:))U(a)"" = T(Bi(z1 + a),. .., Bu(x, + a)).

4. Causality: For z1,...,Zm = Tm+1,. .- Ty it holds
T(Bi(z1),...,Bn(zn))
=T(Bi(x1),..., Bm(zm)) T(Bm+1(Zm+1), - -, Bn(xn))-
5. Wick expansion:
T(Bi(z1),...,Bn(zn)) =

Y (@QTBI (@), BE (20))0)

S yeney Sn

(AT (z1) . AT (xp): .

s1)...s,!

6. Bound on the Steinmann’s scaling degree: il
sd( (2| T(Bi(z1),- .., Bn(zn), Bnt1(0))2)) < Z (dim(B;) + ¢)

j=1



Epstein-Glaser approach — interacting models

The interaction vertices L1,...,Lq, the coupling constants e1,...,eq and the switching
functions g1,...,9q € S(R*), g := (g1, -, 9q)-

Interacting fields with IR regularization — Bogliubov's formula
q
S(g; h) = Texp <in4x Z ejgi(x)L;(x) + in4m h(:c)B(x)(:r)) (1)
j=1

Bret(g; %) 1= (1)

5}:236) S(g;0)7"S(g; )

()

h=0

Time-ordered products of interacting fields with IR regularization

S(g; h) = Texp (ijd%ﬂ Zq:lejgj (x)Lj(x) + ifd4:t

. . (™ 0 é —1
T(Blyl"Ct(gvxl)a IR} Bm,rct(g, $m)) '7( 1) 6hm(33m) e 5h1(f1) S(gv 0) S(g’ h) o (4)
Wightman and Green functions with IR regularization

(QUB1.ret(g3 1) - - - B ret (g5 7m ) ) (5)

(Q T(B1,ret(g;%1), - - - Bmret(g; Tm))2) (6)
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The adiabatic limit

1. The Wightman and Green functions are well-defined as formal power series in
€1,...,€q as long as all the switching functions belong to the Schwartz class.

To make physical predictions one has to take the limit g1 (), ..., gq(z) — 1.
2. For any g € S(RY) such that g(0) = 1 we define a one-parameter family of Schwartz

tests functions:
ge(z) :==g(ex) for e>0. @)

We have lime o ge(z) = 1 pointwise, lime o Ge(q) = (2m)Vd(q) in S'(RY).

3. Let t € S'(RY) and consider the limit

tim [ Ve te)ge(o) = lim [ 5% Ha(—a) = c. (8)

If the above limit exists and its value is independent of the choice of g € S(RY) such
that g(0) = 1 then we say that

> the adiabatic limit of ¢ exists and equals ¢ and
» the distribution £ has the value c at zero in the sense of t.ojasiewicz.
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Known results about the existence of the adiabatic limit

Epstein Glaser (1973) — the weak adiabatic limit

The existence of the weak adiabatic limit in purely massive theories:
W(B1($1)7 [ERE) Bm(xm)) = h\r‘% (Q|Bl,ret(ge; Il)a ) Bm,ret(ge; mm)Q)

(9)

G(Bi(z1), -, Bm(zm)) := Im (@ T(B1ret (ge; 21), -, Bmoret (ges 2m))E2) - (10)

The above limits are taken in S’ (R*™).

Blanchard Seneor (1975) — the weak adiabatic limit

The existence of the weak adiabatic limit in the quantum electrodynamics and the
massless ¢* theory.

Epstein Glaser (1976) — the strong adiabatic limit

The existence of the S-matrix in purely massive theories:

SU = lim S(g)¥  forall  We D, (11)

Fredenhagen Lindner (2014)

The existence of expectation values of the products of the interacting fields in thermal
states.




Existence of the weak adiabatic limit

Theorem

Assume that the interaction vertices L1, ..., Lq of a given model satisfy one of the
following conditions:

1. ¢ =0, dim(£;) =4 for all [,
2. ¢ =1, dim(£;) = 3 and L, contains at least one massive field for all [.

= It is possible to normalize the time-ordered products such that the weak adiabatic
limit exists (the explicit form of the required normalization condition is stated on the next slide).

The bound on the Steinmann'’s scaling degree implies that

sd((Q| T (L8 (21), .., L8 (), £°77(0))Q)) < w — 4n, (12)
where
»wi=4—3P  [dim(A;)e(Ai) + d(Ai)] is a function of s1,..., 8041,
» e(A;) = # the external lines corresponding to A;,
» d(A;) = # the derivatives acting on the external lines corresponding to A;,

» dim(A;) is the canonical dimension of A;, dim(p)=dim(A,)=1, dim(y)=dim(¢)=3.

If w < 0 then in the inductive construction of the time-ordered products the distribution
QT (L5 (1), L7 (@n41)) Q) (13)

ln+1
is determined uniquely by the time-ordered products with at most n arguments.
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Existence of the weak adiabatic limit

Normalization condition which implies the existence of the weak adiabatic limit

The weak adiabatic limit exists if for all super-quadri-indices s, ..., sx which involve only
massless fields the time-ordered products satisfy the condition

QTELE (q1), - L5 (@e)Q) = @n)*8(qr + .-+ ae) S(ar, - qe—1),  (14)

where 97%(0) = 0 for all multi-indices « such that |y| < w, i.e. ¥ has zero of order w at
zero. The value of the distribution 0] % at zero is defined in the sense of tojasiewicz.

In the case of the above-mentioned class of models it is always possible to define
the time-ordered products such that they satisfy the above condition.

Comments:
1. According to the above condition the photon self-energy corrections have zero of

order 2 in the sense of tojasiewicz at vanishing external momentum.

2. The correct mass normalization of all massless fields (= vanishing of the self-energy at
vanishing external momentum) is necessary for the existence of the weak adiabatic limit.

3. Since the correct mass normalization is not possible in the massless > theory, the
weak adiabatic limit does not exist in this theory (the massless 3 theory does not
satisfy the assumption of the theorem from the previous slide).
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Compatibility of normalization conditions

The normalization condition given on the previous slide is compatible with all the
standard normalization conditions:

1. unitarity,

Poincaré covariance,

CPT covariance,

field equations,

Ward identities in the QED.

ok wN

Almost homogenous scaling in purely massless models

Let A™, ..., A" be monomials built out of massless fields. Then
(QT(A™ (1), ..., A" (zx))Q) (15)

scales almost homogeneously with degree

D= Zk] dim(A™7). (16)

Jj=1
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Outline of the proof
The Wightman and Green functions are formal power series in the coupling constant e

J-d4z1 odizo G(Bi(z1),. .., Bm(zm)) f(x1,...,Zm)

_ Ve Jd4a:1...d4wm Cr(Bi(@1)s- -, Bu(@m)) f @1 sam) . (17)

The coefficients of the formal power series are obtained by taking the adiabatic limit

d4y1 . ,.d4yk d*z. ... d*z, ge(y1) ... ge(yr) f(z1,. .., xm)

lim
(QR(L(y1)y -+, L(yr); Bi(z1), - - ., Bm(zm))).

eN0
(18)

The above limit (if exists) is equal to the value at zero in the sense of Lojasiewicz of the

following distribution

_(d'pr d'pm
T(qla"'7qk) 7\[(27‘_)4(27{_)4 (p17-~~,pm)
C B 3 (19)

(Q| R(E(ql)» <. 7£(Qk)§ Bl(—Pl): cooy B (—pm))Q).

*m




Regularity of a distribution near the origin

Notation t(gq,q") = O%%t(|¢|?) generalizing notation due to Estrada (1998)

Let t € S'(RY x RM). For § € R we write
t(a,q') = 0™ (la/"), (20)

iff there exist a neighborhood O of the origin in R x R* and a family of functions
to € C(O) indexed by multi-indices « such that

1. to, = 0 for all but finite number of multi-indices «,
2. [ta(q,q")| < const|q|”*1*! for (q,q) € O,
3. t(q,q") = X, 95ta(a,q') for (¢,4') € O.

Properties

1. If t e C(RY x RM) such that t(q,q") = O(|q|°), i.e. |t(q, ¢ )| const |¢|° in some
neighborhood of the origin in RY x RM | then t(q,q') = O%%(|q|%).

2. Ifte S'(RY x RM) and t(q,q’) = 0¥*(|q|°) then t(q,0) = O%**(|¢|°).

3. Ifte S'(RY) and t(q) = c + O¥**(|q|°) for some c € C and § > 0 then ¢ has value ¢
at zero in the sense of tojasiewicz.




Outline of the proof (continued)

Theorem
d'pi dlpm
r(qu"'7qk) = J‘ (27_[_)4 A (27r)4 f(p17"'7pm)
@ R(E(ql)» s E(Q’@)? Bl(_pl): ) Bm(_pm))Q)- (21)
has value at g1 = ... = ¢m = 0 in the sense of tojasiewicz.
s=(s1,.-.,8k), r = (T1,...,7m) — lists of super-quadri-indices involving only massless fields

s,r d4 d m
r (qla-"qu‘;qga"wq{m) ::J(27'f))14“ ( p) f(p177pm)

(QRL (@), -, £ (a1); BI™ (@1 = p1)s o, BE™ (G —pm))Q) (22)

Induction hypothesis

There exists ¢ € C(R*™) such that for all € > 0 it holds
PG @k G ) = (@ Gm) + O (g, a0, (23)

where

Z [dim(A;) e(A;) + d(Ay)]. (24)

The distribution d**(q1,...,qk; 41, ---,qm) is defined in analogous way to the
distribution 7°%(q1,...,qk; ql, - .-, qm) with the product R replaced by D = A —R.
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Outline of the proof (continued)

It is possible to represent d>*(qi,...,qk;q1,-- -, Gm) With k = n in terms of
» Wightman two point functions of free fields,
T (quy e, QR L, - -5 Q) With K < m and
s (QTELCY (q1), .. L8 (q)) = 20)* 6 (g + -+ - + a6) Z5(q1s - - Q1)

s=(s1,...,8k), r = (T1,...,7m) — lists of super-quadri-indices involving only massless fields

The proof of the inductive step is divided into two parts:
1. Using the above representation and the lemma below we first show that for all € > 0

. ,
dsﬁr(qlv---:%%q/la---:Q:n) = OdlSt(‘qla c k] ). (25)

Lemma

It is possible to normalize the time-ordered products such that for all super-quadri-indices
S1,...,8k which involve only massless fields and all € > 0

Es(qlv ey qkfl) = OdiSt(‘qlf ceey qkfllw_g)7 (26)
where p
w =4 = Y [dim(4:) e(4,) + d(4))]. (27)

2. Next, using the above result we prove that for all ¢ > 0

PG @ G ) = (s Gm) + O (g, | T (28)
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Other results and open problems

Existence of the central splitting solution in the QED

For all polynomials By, ..., Bir which are sub-polynomials of the interaction vertex the
retarded product satisfy the condition

(QR(Bi(q1),- -, Bu(gn); Bus1(a041))Q) = (20)*6(q1 + ..+ qns1) 7(q1, -, qn), (29)
where 077 (0) = 0 for all multi-indices , such that |y| < w = Z?Ll dim(B;).

= It fixes uniquely the time-ordered products of sub-polynomials of the interaction vertex.

= It implies the standard normalization conditions e.g. the Ward identities.

> The existence of the Wightman functions may be used to define a Poincaré invariant
functional on the algebra of interacting fields.

» This functional is a positive (= it is a state) in the case of models without vector
fields.

» s it possible to define the Poincaré invariant state on the algebra of observables in
the QED or the non-abelian Yang-Mills theories without matter?

The financial support of the Polish Ministry of Science and Higher Education, under the grant
7150/E-338/M /2017, is gratefully acknowledged.

16 /16




