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Major precursors

m BRST for QED (Diitsch/Fredenhagen, Commun. Math. Phys. 203
(1999) 71, arXiv:hep-th/9807078)

m Master Ward Identity (Ditsch/Boas, Rev. Math. Phys. 14 (2002)
977, arXiv:hep-th/0111101)

m Yang—Mills in curved spacetime (Hollands, Rev. Math. Phys. 20
(2008) 1033, arXiv:0705.3340)

m Batalin—Vilkovisky formalism for closed gauge algebras
(Fredenhagen/Rejzner, Commun. Math. Phys. 317 (2013) 697,
arXiv:1110.5232)

m Also important: Retarded products (Dutsch/Fredenhagen,
Rev. Math. Phys. 16 (2004) 1291, arXiv:hep-th/0403213)
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m Dynamical fields {¢x}, where the index K distinguishes the type
of field, and Lorentz, spinor and Lie algebra indices when necessary

m ex € {0,1} is the Grassmann parity of ¢k

m Action S = Sg + Sint, with free action S, interaction Si,¢ at least
cubic in the fields

m Free action Sp = %fgbK(x)PKL(x)quL(x) dx with Py, formally
self-adjoint: P, = (—1)<“LPx

m Unique retarded and advanced Green's functions:
Pre()Gi " (x,y) = dkmd(x,y) = Piyc(y) Gpa/ ™ (x. y) with
supp [ Gret/adv( y)f(y)dy C J*(supp f) and
GR(x,y) = (1)t G (v, x)

m Pauli-Jordan (commutator) function Ak (x,y) =
Git(x.y) = Gi'(x,¥) = G (x,y) — (=1) L G[% (v, x)
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m 2y free x-algebra generated by the expressions ¢ (f), where £ is
a test function, with the product denoted by x, the x-relation
given by [k (f)]" = ¢l (F*), unit element 1, factored by
(anti-)commutation relation

[0k (f), oL(8)],, = ¢k () *n () — (=1) " d1(g) *xn ok (f)
= iﬁ/ F(x)Aki(x,y)g(y)dxdy 1 = ihAk.(f,g) 1

m Completion of Ay w.r.t. weak topology: free-field algebra 2

m Practical completion: Consider fixed two-point functions GIL(X,y)
of Hadamard form, which are bisolutions
Pri(x) Gy (x,¥) = 0= P}, (y) Gy (x, y) and satisfy
G (x,y) — (1))t G (v, x) = Aki(x,y) and a certain wave
front set condition (microlocal spectrum condition)
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m Normal-ordered products ¢k, - - - ¢k, :c(A® - @ f) =
Sk, (x1) -+ ok, (xn):cfi(x1) - - - fa(xn) dx1 - - - dxp: defined by
:0k:6(f) = dk(f) and inductively such that

K (x1) - Ok, (Xn)i6 *n :bL (V1) - - DLy (Ym)i6
= 61, (1) -+ b1, () exp (iR G ) by (11) -~ D1, (ym): G

; ? — ORr + o
with G = fWGMN(u, v)m dudv holds

m Take the limit f1(x1) ® - -+ ® Ffu(xn) — A(x1)d(x1, ..., xn) (Wick
monomials), well-defined thanks to microlocal spectrum condition
m Locally covariant normal products :¢x, (x1) - - - ¢k, (Xn):H: use only

geometrically defined singular part (Hadamard parametrix Hpy)
instead of two-point function
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m On-shell free-field algebra /Jo, where Jy is ideal generated by
equations of motion Pk ¢; =0, i.e., elements ¢, (Pj, f) and their
normal-ordered products

m F: space of local smeared field polynomials (e.g.,
I g(x)F* (x) Fu(x) dx)
m Time-ordered products: multilinear maps 7,: F®" — g

m Causal factorisation:
To(FA® - @F) =T (FL® - ® Fp) *p Tn—e(Fre1 ®@ - -+ @ Fp) if
JT(supp Fi)NJ (suppFj) =0 forall 1<i<{( ¢+1<j<n

m Graded symmetry: T[-- - F® G---] = (=1)FCT[--GRF ---]
for elements F, G € F with definite Grassmann parity

m Locality and covariance (cumbersome notation)
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m Non-uniqueness: f[exp(@ (%F)} = T[exp®<%F + %Z(eg))] with
local and covariant, multilinear maps Z,, such that
Zy(F1®---® F,) =0 for supp F; Nsupp F; = 0,

Z[ - @FRG6C® -] =(-1)CZ[- - GRF®- -],
Z5(F®") = O(h)

m Interacting time-ordered products:
ﬂ[exp@,(%G)} = T[exp®(%L)rh( Y *p T[exp@,(%(L + G))]

m Smeared interaction: L = [ g(x)Ldx (limit g — const possible on
algebraic level, called “algebraic adiabatic limit")

m Contrary to appearance, 7; is formal power series in f, special
case: interacting field operator corresponding to classical F: T;(F)

m Algebra 2 of interacting quantum fields: formal power series in i
with coefficients in g
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m Gauge problem: Pg; has non-trivial kernel = Batalin—Vilkovisky
formalism building on Becchi-Rouet—Stora—Tyutin

m For each symmetry transformation d¢ with parameter £y acting on
the fields {¢k }, we introduce a ghost field cp;, an antighost field
Cm, an auxiliary field By (together {®x} = {¢k, ck, ck, Bk })

m Fermionic symmetries (e.g., supersymmetry): ¢ is fermionic, global
symmetries: no antighost/auxiliary field (non-minimal fields),
reducible symmetries: rinse and repeat (“ghosts for ghosts”)

= Antifield ® for each field

m New gradings: ghost number g, antifield number a such that

e(er) = e(Er) = e(ék) + 1, e(Bk) = e(ék), (D)) =e(Pk)+1,
g(ok) =0, g(ck)=1, g(ck)=-1, g(Bk)=0,
g(®) = —1—g(®x), a(®x)=0, a(®f)=1.
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- . _ orF 6.G orF 6.G
m Antibracket: (F,G) = [ 5o () M%L((X) - 6¢fR((x) 5¢;(X)> dx for

F, G € F (canonical bracket in field/antifield space)
m Graded symmetry: (F,G) = (—1)¢tecteres (G, F)
Graded Leibniz rule: (F, GH) = (F, G)H + (—1)(tFc G(F, H)
Jacobi identity: (—1)(eFtD(EHTI(F (G, H)) + cyclic = 0
Grading: {g.a,¢}[(F,G)] = {g.a,¢}(F) + {g,2,¢}(G) £1
m BRST differential: sF = (Stot, F) with total action Siot = S + Sext
chosen such that
the BV master equation (Siot, Stot) = 0 is fulfilled,
the original symmetries are recovered by a BRST transformation,
with the transformation parameter replaced by the ghost:
som = Y, 0cdm + terms containing antifields,
the non-minimal fields form trivial pairs: scyy = By, sBy =0,
Pk of the antifield-independent free part of Sy, has unique
retarded and advanced Green's functions
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m Explicit algorithm to find Sext as series in antifields, often
terminates because of dimensional constraints

m s is odd (fermionic) differential, left derivation (from Leibniz rule),
nilpotent s> = 0 (from Jacobi identity and BV master equation)

m s augments ghost number by 1, define cohomology classes

Ker(s: F& — F&tl)

g
HE(s) Im(s: F&—1 — Feg)

F& C F subspace of homogeneous elements of ghost number g

m HO(s): classical gauge-invariant observables (representatives
independent of trivial pairs, check that also antifield-independent)

m H(s|d): obstruction to quantisation, d is exterior differential

m H(s): obstruction for quantum observables
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m Classical theory: symmetry transformation on phase space =
Poisson bracket with Noether charge

m Product of classical invariant observables is again invariant, since
Poisson bracket obeys Leibniz and classical observables factorise:
(01(92)L = (Ol)L(O2)L. with (O)L solution of O = {O, L}

m In quantum theory: 7;(O1 ® O2) # TL(O1) *1 To(O2)

m Relations between time-ordered products if symmetry is preserved:
Ward(—Takahashi-Slavnov—Taylor) identities, but in general extra
anomalous terms

m For locally covariant derivation D acting on Ag:

expa, (;_LF>] = ;THD (ef) +A(ef)] @ exps (;Fﬂ

DT
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m D,, A,: multilinear maps F&" — F
m Graded symmetry:
(DAY - 9F®GC®---]=(-1)¥<{D, A} - @ CRF®---]
m Support on diagonal: {D, A},(F1®---® F,) =0 if
supp F; Nsupp F; = () for some i, j
m Grading: g[{D, A} (Fi®---®@ F,)] =d+ Y, g(F)if
D: ﬁg — ﬁﬁ*d
m Locality and covariance
m Order in h: D,(F®") = O(R®) (“classical part”) and
An(F®™) = O(h) (“anomaly”)
m Example: Inner derivation Da = 1/(ih)[Q, a],, for fixed @ € 2o

and all a € 2y (symmetry obtained by graded commutator with
the operator corresponding to the classical Noether charge)
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m Explicit formula for classical part
m If D is an inner derivation, then
Identifying Qu = limp_,0 @ with an element of F, we have

Dyi(F) = {chyF}—//;RQd Avn(x,y)

At second order, we have

oL Qe
(o n- [[ g ot aen {5l rf s

Dk(F®k) =0 for all k > 3 if Q is at most of second order in
fields, i.e. if $3Qu/[0pk(x)d0L(y)dpm(z)] = 0 for all K, L, M.

6¢> o )dXdy




Gauge theories in curved spacetimes: (Anomalous) Ward identities and the underlying Lo algebra

Anomalous Ward identities 4/9

m If D acts by the antibracket with an element Q € F at most of
second order in fields (or antifields), that is

ORQ t

0RQ
5¢i (X) ) D(DK(X) = R
K

(5¢K(X) ’

DCDK(X) = —

and extended to general A € 2y by linearity and a graded Leibniz
rule, then
At first order, we have

Di(F) = (Qa, F).

At second order, we have

6RF ret adv 5|—QC|
H(F® F) = //(5 T(x,y) + Gi¥ (x, )](M)L(y),F)dxdy.

Dy (F&K) =0 for all k > 3.
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Application to BRST differential sF = (S, F): consider free part
soF = (So, F) with Sp quadratic in fields and antifields

Free BRST differential g acts on 2y by

80P (x) = —0rS0/IDL(x), 8o®k(x) = 6rS0/6Pk(x), linearity,
graded Leibniz rule, and we obtain Da(F ® F) = (F, F)
Anomalous Ward identity:

exps(3F)] = 57| (s0F + 5 (F )+ A(E) ) @ expe (1 F)|

Consistency condition follows from 3 = 0:

SoT

(So+ F, A[ef]) = %A[(So +F, S0+ F) @ ef] + A[A[ef] @ ef]

If H(s|d) = ), can use freedom in definition of time-ordered
products to obtain A{eé@} = 0 using consistency condition, order
by order in A
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m For interacting time-ordered products: if A{eé@} =0, we have

exp®<;p>} _ ;TLKSRL (F,F)+A(e L+F)> ®exp®<;F>}

with 8a = $0a + 1/(ih)[TL(AQ™), a],, for a€ Qg and AQ™ € F
m Define n-ary quantum brackets [-]5:

S

[Filn =sF + (—1)61«4{/:1 ® eé@} :
[F Pl = (-1)(Fu, B) + (1) "2 AR @ K oel]
[Fi,..., F]n = (-1)F +€kA[F1® ®Fk®e§} , k> 3.

m Signs ensure intrinsic oddness: [aG, F¥];, = (—1)%a[G, F¥];,
graded symmetry inherited from anomaly terms A,



Gauge theories in curved spacetimes: (Anomalous) Ward identities and the underlying Lo algebra

‘— Anomalous Ward identities

Anomalous Ward identities 7/9

Interacting Ward identity for k fields:

]S ()l

Nilpotency 52 = 0 implies Z [F™ ¢ [Fe]h]h =0

W

Intrinsic oddness, graded symmetry of [-]s» and above relation:
quantum brackets form an L., algebra over F (in b-picture)

Level n = 1: [[F]x]n = O gives nilpotency of quantum BRST
differential q =[], = s + O(h), quantum observables are in HO(q)
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m Level n=2: 2[F,[Flxnlsn + [[F, F]a]n = 0 ensures compatibility of
quantum antibracket (F, G), = (—1)[F, G|, = (F, G) + O(h)
and quantum BRST differential: q(F, F), = —2(F,qF);

m Compatibility condition ensures that antibracket is a well-defined
map between cohomology classes
(-, )n: H&(q) @ HE'(q) — HETEH(q)

m Level n=3: 3[F, F,[Flu]n + 3[F,[F, Fluln + [[F3]a]n = 0
represents the Jacobi identity for the quantum antibracket in
cohomology: (F, (F, F)a) = —[F, F,aFls — 1alF%, = 0 mod q
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m If moreover H'(s) = (), we have
To each classical observable corresponds an observable in the
quantum theory, that is, each representative of H%(s) can be
extended to a representative of H%(q).
There exist maps C,: F°®" — F° n > 1 (the contact terms), such
that the interacting time-ordered product

'EFMQ[;F—;C@QJ]

is independent of the choice of representative F € H%(q), up to
S-exact terms. They satisfy the identities

[exp(F —C(e3))], =0,
Cl(F) =0, and
C(eg ®qG) = [1 — exp(F fC(eg)), G]
for Ge F~L.

h
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m You are overwhelmed and absolutely fascinated, but it's time to go
home.

m There exists an anomalous Ward identity for each derivation on the
algebra of perturbatively interacting quantum fields, encoding
violations of the classically expected result.

m For the BRST differential in quantum gauge theories, the
anomalous terms in this Ward identity form an L., algebra.

m The relations of this L., algebra ensure that time-ordered products
are independent of the choice of representative for an observable.

m | want to use this to show that nice observables exist in quantum
gravity, i.e., that they are renormalisable — lack of time prevented
me from actually doing it so far.
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Thank you for your attention

Questions?
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