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Motivation

The transformations:

1 Parity: P(t, ~x) = (t,−~x),

2 Time reversal: T (t, ~x) = (−t, ~x),

3 Charge conjugation: C{particle} 7→ {antiparticle},

are not necessarily symmetries of physical theories.

1 However, there is strong evidence that CPT is a symmetry.

2 In mathematical QFT various CPT theorems are available.
[Lüders 54, Pauli 55, Jost 57,. . . Guido-Longo 95].

3 Bisognano-Wichmann (BW) property is an assumption in
modern CPT theorems.
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Outline

1 Relativistic Quantum Mechanics

Poincaré group and its massless irreps Us

Modularity condition (MC)

Proof of MC for Us ⊕ U−s

2 Algebraic QFT

Bisognano-Wichmann (BW) property

MC⇒ BW at the single-particle level

Collision theory and full BW

3 Conclusion: BW⇒ CPT
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Lorentz group

Minkowski spacetime: (R4, η) with η := diag(1,−1,−1,−1).

1 Lorentz group: L := O(1, 3) := {Λ ∈ GL(4,R) |ΛηΛT = η }

2 Proper ortochronous Lorentz group: L↑+ - connected
component of unity in L.

L = L↑+ ∪ TL↑+ ∪ PL↑+ ∪ TPL↑+,

where T (x0, ~x) = (−x0, ~x) and P(x0, ~x) = (x0,−~x).

3 Covering group: L̃↑+ = SL(2,C) = {λ ∈ GL(2,C) | detλ = 1}
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Poincaré group

1 Poincaré group: P := R4 o L.

2 Proper ortochronous Poincaré group: P↑+ := R4 o L↑+.

3 Covering group: P̃↑+ = R4 o L̃↑+ = R4 o SL(2,C)
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Symmetries of a quantum theory

1 H - complex Hilbert space of physical states.

2 For Ψ ∈ H, ‖Ψ‖ = 1 define the ray Ψ̂ := { eiφΨ |φ ∈ R }.

3 Ĥ - set of rays with the ray product [Φ̂|Ψ̂] := |〈Φ,Ψ〉|2.

Definition

A symmetry of a quantum system is an invertible map Ŝ : Ĥ → Ĥ
s.t. [ŜΦ̂|ŜΨ̂] = [Φ̂|Ψ̂].
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Symmetries of a quantum theory

Theorem (Wigner 31)

For any symmetry transformation Ŝ : Ĥ → Ĥ we can find a unitary
or anti-unitary operator S : H → H s.t. ŜΨ̂ = ŜΨ. S is unique up
to phase.

Application:
1 P↑+ is a symmetry of our theory i.e., P↑+ 3 (a,Λ) 7→ Ŝ(a,Λ).

2 Thus we obtain a projective unitary representation S of P↑+
S(a1,Λ1)S(a2,Λ2) = eiϕ1,2S((a1,Λ1)(a2,Λ2)).

3 Fact: A projective unitary representation of P↑+ corresponds to
an ordinary unitary representation of the covering group

P̃↑+ 3 (a, λ) 7→ U(a, λ) ∈ B(H).
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Positivity of energy

Consider a unitary representation P̃↑+ 3 (a, λ) 7→ U(a, λ) ∈ B(H).

1 Pµ := i−1∂aµU(a, I )|a=0 - energy momentum operators.

2 If SpP ⊂ V+ then we say that U has positive energy.

P

0P
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Distinguished states

1 Def: Ω ∈ H is the vacuum state if U(a, λ)Ω = Ω for all
(a, λ) ∈ P̃↑+.

2 Def: H(1) ⊂ H is the subspace of single-particle states of mass
m and spin s if U � H(1) is a finite direct sum of irreducible
representations [m, s]. E.g. for photons: [0, 1]⊕ [0,−1].

P

m

Ω

P
0
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Structure of [m = 0, s] representations of P̃↑+ = R4 o L̃↑+

1 Fix a vector at the boundary of the lightcone, e.g.
q = (1, 1, 0, 0).

2 Fact: the stabilizer of q in L̃↑+ is Stabq = Ẽ(2).

3 Def. Stabq 3 (y , φ) 7→ Vs(y , φ) = e iφs , s ∈ Z/2, is a
representation of finite spin s.

4 Def. The [m = 0, s] representation of P̃↑+ on L2(∂V+):

(Us(a, λ)ψ)(p) = e ipaVs(bpλbΛ(λ)−1p)ψ(Λ(λ)−1p),

where Λ : L̃↑+ → L
↑
+ is the covering map and Λ(bp)q = p.
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Structure of [m = 0, s] representations of P̃↑+ = R4 o L̃↑+

1 Fix a vector at the boundary of the lightcone, e.g.
q = (1, 1, 0, 0).

2 Fact: the stabilizer of q in L̃↑+ is Stabq = Ẽ(2).

3 Def. Stabq 3 (y , φ) 7→ Vs(y , φ) = e iφs , s ∈ Z/2, is a
representation of finite spin s.

4 Def. The [m = 0, s] representation of P̃↑+ on L2(∂V+):

Us = IndP̃
↑
+

R4oStabq
(q · Vs)
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Modularity condition (MC)

First, we introduce a wedge W3 = { x ∈ R4 : |x0| < x3 } in
Minkowski spacetime and the opposite wedge W ′

3

0

x
3

W
3W’

3

x
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Modularity condition (MC)

1 Def: G 0
3 is the subgroup of λ ∈ L̃↑+ s.t. Λ(λ)W3 = W3.

2 Def: G3 = 〈G 0
3 ,R4〉.

3 Def: r1(π) ∈ L̃↑+ is the rotation around the 1st axis.
In particular, Λ(r1(π))W3 = W ′

3.

4 Def: Ĝ3 = 〈G3, r1(π)〉.

5 Def: A Ĝ3-representation Û satisfies the modularity
condition (MC) if Û(r1(π)) ∈ Û(G3)′′. [Morinelli 18]

6 As we will discuss later, MC ⇒ BW ⇒ CPT
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Modularity condition (MC)

1 Def: A Ĝ3-representation Û satisfies the modularity
condition (MC) if Û(r1(π)) ∈ Û(G3)′′.

2 Fact [Morinelli 18]: If Û satisfies MC then Û ⊗ 1K
satisfies MC.

3 Fact [Morinelli 18]: Us |Ĝ3
, s ∈ Z/2, satisfy MC.

Theorem (Morinelli-W.D. 19)

Representations (Us ⊕ U−s)|Ĝ3
, s ∈ Z, satisfy MC.

W. Dybalski (joint work with V. Morinelli) Bisognano-Wichmann property



Modularity condition (MC)

1 Def: A Ĝ3-representation Û satisfies the modularity
condition (MC) if Û(r1(π)) ∈ Û(G3)′′.

2 Fact [Morinelli 18]: If Û satisfies MC then Û ⊗ 1K
satisfies MC.

3 Fact [Morinelli 18]: Us |Ĝ3
, s ∈ Z/2, satisfy MC.

Theorem (Morinelli-W.D. 19)

Representations (Us ⊕ U−s)|Ĝ3
, s ∈ Z, satisfy MC.

Idea of proof:
1 We show Us |Ĝ3

' U−s |Ĝ3
.

2 Then (Us ⊕ U−s)|Ĝ3
' Us |Ĝ3

⊗ 1C2 , hence it satisfies MC.

W. Dybalski (joint work with V. Morinelli) Bisognano-Wichmann property



Proof of Us |Ĝ3
' U−s |Ĝ3

.

Recall that Us is an induced representation:

Us = IndP̃
↑
+

R4oStabq
(q · Vs), where Stabq = Ẽ (2), Vs(y , φ) = e iφs .

We apply the Mackey subgroup theorem:

1 Let H1,H2 ⊂ G be (suitable) closed subgroups.

2 Let ρ be a representation of H1.

3 Then (IndG
H1
ρ)|H2 '

∫ ⊕
H1\G/H2

IndH2
Hg

(ρ ◦Ad g) dν([g ]),

where Hg := H2 ∩ (g−1H1g).

Application: Us |Ĝ3
'

∫ ⊕
R+ IndĜ3

R4o〈r1(π)〉(rq · Vs)dr ' U−s |Ĝ3
.
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Relativistic Quantum Mechanics

Definition
A relativistic quantum mechanical theory is given by:

1 H - Hilbert space.

2 P̃↑+ 3 (a, λ) 7→ U(a, λ) ∈ B(H) - a positive energy unitary rep.

3 B(H) - possible observables.

H may contain a vacuum state Ω and/or subspaces of
single-particle states H(1).
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Relativistic (algebraic) QFT

Definition
A relativistic QFT is a relativistic QM (U,H) with a net

R4 ⊃ O 7→ A(O) ⊂ B(H)

of algebras of observables A(O) localized in open bounded regions
of spacetime O, which satisfies:

1 (Isotony) O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2),

2 (Locality) O1 ∼ O2 ⇒ [A(O1),A(O2)] = {0},

3 (Covariance) U(a, λ)A(O)U(a, λ)∗ = A(Λ(λ)O + a).

Furthermore, there is a vacuum vector Ω, cyclic for
A :=

⋃
O⊂R4 A(O).
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Bisognano-Wichmann property

1 W3 = { x ∈ R4 : |x0| < x3} a wedge.

2 A(W3) is the von Neumann algebra of this wedge.

3 Tomita-Takesaki theory: SAΩ := A∗Ω for A ∈ A(W3).

4 Polar decomposition: S = J∆1/2.

5 Modular evolution R 3 t 7→ ∆it = e i log(∆)t .

6 Def: An algebraic QFT (A,U,Ω) has a Bisognano-Wichmann
(BW) property if

U(λt) = ∆−it ,

where λt ∈ L̃↑+ is a family of boosts in the direction of the
wedge.
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Main result

Theorem (Morinelli-W.D. 19)

For algebraic QFT which
1 describe massless Wigner particles with spins (s,−s), s ∈ Z,
2 are asymptotically complete,

the Bisognano-Wichmann property holds.
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Collision theory and asymptotic completeness

1 Def. An algebraic QFT describes Wigner particles of mass
m = 0 and spins (s,−s) if there is a subspace H(1) ⊂ H
s.t. U|H(1) = Us ⊕ U−s .

2 Def. For A ∈ A(O), outgoing asymptotic fields are given by:

At := −2 t
∫

dω(n)∂0A(t, tn), At :=
1
ln t

∫ t+ln t

t
dt ′ At′

Aout := lim
t→∞

At . Fact: AoutΩ ∈ H(1).

3 Def. Aout(O) := { e iAout
: A ∈ A0(O), A∗ = A }′′.

4 Fact: (Aout,U,Ω) satisfies all the standard properties, with a
possible exception of cyclicity of the vacuum. [Buchholz 77]

5 Def. If cyclicity of the vacuum holds, we say that (A,U,Ω) is
asymptotically complete.
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Asymptotic creation/annihilation operators

1 Def: Let η ∈ S(R4) be s.t. supp η̃ ∩ V+ = ∅. Then the
asymptotic annihilation operators are given by

Aout− :=

∫
d4x Aout(x)η(x),

2 The asymptotic creation operators are given by
Aout+ = (Aout−)∗.

3 Scattering states:

Ψout := Aout+
1 . . .Aout+

n Ω.

4 Asymptotic completeness: Scattering states span H.
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Main result

Theorem (Morinelli-W.D. 19)

For algebraic QFT which
1 describe massless Wigner particles with spins (s,−s), s ∈ Z,
2 are asymptotically complete,

the Bisognano-Wichmann property holds.

Proof (idea): Set Zt = ∆itU(λt).
1 By MC, we know that ZtA

out+Ω = Aout+Ω.

2 For 2-particle states we write

ZtA
out+
1 Aout+

2 Ω = (ZtA
out+
1 Z ∗t )Aout+

2 Ω

= [(ZtA
out+
1 Z ∗t ),Aout+

2 ]Ω + Aout+
2 Aout+

1 Ω

3 The commutator is zero by explicit computation. �
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CPT theorem

Theorem (Lüders 54, Pauli 55, Jost 57,...Guido-Longo 95)

In algebraic QFT satisfying the Bisognano-Wichmann property
there exists an anti-unitary operator θ on H which has the expected
properties of the CPT operator, i.e.,

1 θA(O)θ∗ = A(−O),

2 θU(a, λ)θ∗ = U(−a, λ),

3 θρ( · )θ∗ = ρ̄( ·) for DHR morphisms ρ.

Recall:
1 BW property: ∆−it = U(λt),
2 S = J∆1/2 is defined by SAΩ = A∗Ω, A ∈ A(W3),

One checks that θ := JU(r3(π))−1 has the required properties.
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Conclusions

1 The Bisognano-Wichmann property enters as an assumption in
modern CPT theorems.

2 We proved the Bisognano-Wichmann property for
asymptotically complete theories of massless particles with
spins (s,−s), s ∈ Z. (The massive case settled by [Mund 01]).

3 Future direction: generalization to fermions, i.e. s ∈ Z/2.

V. Morinelli, W.D. The Bisognano-Wichmann property for
asymptotically complete massless QFT. arXiv:1909.12809.

W. Dybalski (joint work with V. Morinelli) Bisognano-Wichmann property


	Spacetime symmetries
	Relativistic Quantum Mechanics
	Relativistic (algebraic) QFT 

