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Bernard Kay

About 20 years ago I arrived in York to start a PhD with Bernard. He
suggested that I could perhaps work on an idea of his concerning the
possibility of “local vacuum states” in curved spacetime.

Among the papers I was reading for inspiration was the 177p article

“Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular,
Quasifree States on Space-Times with a Bifurcate Killing Horizon”

[Kay, Wald 1991]

which I immediately found so interesting that I began to study it in every
detail.



Bifurcate Killing horizons

Such geometries are a generalization of familiar BH spacetimes such as the
extended Schwarzschild(-deSitter) spacetime, containing as essential
geometric feature one (or several) pairs of intersecting horizons:
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A key idea of 1991 Kay-Wald paper

The seed of the paper was a calculation of the “restriction” of the 2-point
correlation function of a scalar field ϕ to a (Rindler-) horizon:

“ω(ϕ(x1)ϕ(x2)) ∝
δ(x1 − x2︸ ︷︷ ︸

edge cts.

) ln( U1 − U2︸ ︷︷ ︸
horizon cts.

−i0)”

See also [Wald, APS Einstein Prize Talk 2017]

Interpretation

Quantum modes of ϕ propagating through horizon organize themselves into
those of a “bundle” of (c = 1) CFTs on light rays of horizon.

This idea was well ahead of its time in 1991! Its ramifications (BH entropy,
holography, thermodynamics, ...) are still being pursued today, and probably
tell us something deep about QFT and perhaps even quantum gravity.
P.S.: A reinterpretation of 2-point function formula for light cones also lead to a proposal for a local vacuum state in my PhD thesis.



The main result of the paper (building on 2-point function formula) was:

Main result
Any quantum state ω which is invariant under “boost” symmetry and
“regular” across horizon necessarily has to be a thermal state at precisely the
Hawking-temperature,

THawking =
κ

2π
(1)

The surface gravity, κ comes in through the relation U = eκu where u is the
“boost” parameter. This transformation maps a vacuum state to a thermal
state of the CFT. Related to [Bisognano, Wichmann 1972, Unruh 1976, Sewell 1982]

Consequence: a thermal state at a different temperature necessarily must
have a singular behavior of the stress tensor ω(Tab) → ∞ on the horizons
HA and HB , i.e. an observer made out of the quantum field (or coupled to
it) will burn when he/she crosses the horizon (“firewall”).



Entanglement in QFT

Perhaps essential feature of the setup studied by Kay and Wald: quantum
state is strongly entangled (in a particular way!) between a “system A” and
a “system B” across bifurcation surface:

system Bsystem A

bifurcation surface

Entanglement measures

It turns out that this is the case for every (regular) state in QFT across any
pair of disjoint volumes A and B! How to define entanglement and how to
measure it (in QFT)? Rest of this talk.



What is entanglement?

Standard setup of quantum theory (except measurement):

▶ observables: operators a on Hilbert space H
▶ state: ω ↔ statistical operator, ω(a) = Tr(ρa) = expectation value
▶ pure state: ρ = |Ω⟩⟨Ω|. Cannot be written as convex combination of

other states, otherwise mixed.
▶ independent systems A and B: HA ⊗HB , observables for A: a⊗ 1B ,

observables for B: 1A ⊗ b

Separable states:

Convex combinations of product states (statistical operators ρA ⊗ ρB).



What is entanglement?

Classically: State on bipartite system ↔ probability density on phase space
ΓA × ΓB . Always separable! This motivates:

Entangled states

A state is called “entangled” if it is not separable.

Example: HA = HB = C2 spin-1/2 systems, Bell state ρ = |Ω⟩⟨Ω|
|Ω⟩ ∝ |0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩.

is (maximally) entangled.

Example: n dimensions HA = HB = Cn:

|Ω⟩ ∝
∑
j

|j⟩ ⊗ |j⟩

Example: ∞ dimensions:

|Ω⟩ ∝
∑
j

cj |j⟩ ⊗ |j⟩, cj → 0



What is entanglement?

Classically: State on bipartite system ↔ probability density on phase space
ΓA × ΓB . Always separable! This motivates:

Entangled states

A state is called “entangled” if it is not separable.

Example: HA = HB = C2 spin-1/2 systems, Bell state ρ = |Ω⟩⟨Ω|
|Ω⟩ ∝ |0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩.

is (maximally) entangled.

Example: n dimensions HA = HB = Cn:

|Ω⟩ ∝
∑
j

|j⟩ ⊗ |j⟩

Example: ∞ dimensions:

|Ω⟩ ∝
∑
j

e−2πEj/κ|j⟩ ⊗ |j⟩ (Killing horizons) [Kay, Wald 1991]



When is a state more entangled than another?

More/less entanglement:

We quantify entanglement by listing the set of operations ω 7→ F∗ω on
states which (by definition!) do not increase it. → partial ordering of states.

What are these “operations”? Single system (channel):
▶ “Time” evolution: unitary transformation: F(a) = UaU∗

▶ Ancillae: n copies of system: F(a) = 1Cn ⊗ a

▶ v. Neumann measurement: F(a) = PaP , where P : H → H′

projection
▶ Arbitrary combinations = completely positive maps [Stinespring 1955]

Bipartite system:

Separable operations:

Convex combinations of product channels FA ⊗FB



Entanglement measures

This definition is consistent with basic facts [Plenio, Vedral 1998]:
▶ No separable state can be mapped to entangled state by separable

operation
▶ Every entangled state can be obtained from maximally entangled state

(Bell state) by separable operation

An entanglement measure E on bipartite system should satisfy:

Minimum requirements for any entanglement measure:

▶ No increase “on average” under separable operations:∑
i

piE( 1
pi
F∗
i ω) ≤ E(ω)

for all states ω (NB: pi = F∗
i ω(1) = probability that i-th separable

operation is performed)
▶ E must vanish iff state separable
▶ (Perhaps) various other requirements



Examples of entanglement measures

Example: Relative entanglement entropy [Uhlmann 1977, Plenio, Vedral 1998,...]:

ER(ρ) = inf
σ separable

H(ρ, σ) .

Here, H(ρ, σ) = Tr(ρ ln ρ− ρ lnσ) = Umegaki’s relative entropy [Araki 1970s]

Example: Distillable entanglement [Rains 2000]: ED(ρ) = log of max. number of
Bell-pairs extractable via separable operations from N copies of ρ, per copy

Example: v. Neumann entropy EN (ρ) = −Tr(ρA ln ρA) of reduced state
ρA = TrHB

ρ (restriction to A, or similarly B) is not a reasonable
entanglement measure except for pure states!

In fact, for pure states one has basic fact [Donald, Horodecki 2002]:

Uniqueness

For pure states, basically all entanglement measures agree with v. Neumann
entropy of reduced state.

For mixed states, uniqueness is lost. In QFT, we are always in this situation!



Entanglement measures in QFT

In QFT, systems are tied to spacetime location, e.g. system A

A

time slice = Cauchy surface C

OA

C

Figure: Causal diamond OA associated with A.

Set of observables measurable within OA is an algebra AA = “quantum fields
localized at points in OA”. If A and B are regions on time slice (Einstein
causality) [Haag, Kastler 1964]

[AA,AB] = {0} .

The algebra of all observables in A and B is called AA ∨ AB = v. Neumann
algebra generated by AA and AB .



Entanglement measures in QFT

Unfortunately [Buchholz, Wichmann 1986, Buchholz, D‘Antoni, Longo 1987, Doplicher, Longo 1984, ... Fewster, Verch 2013]:

[AA,AB] = {0} does not always imply AA ∨ AB
∼= AA ⊗ AB .

This will happen due to boundary effects if A and B touch each other:

Basic conclusion

a) If A and B touch, then there are no (normal) product states, so no
separable states, and no basis for discussing entanglement!

b) If A and B do not touch, then there are no pure states (without
firewalls)!

Therefore, if we want to discuss entanglement, we must leave a safety
corridor between A and B, and we must accept b).

=⇒ no unique entanglement measure!
In the rest of talk, I explain results obtained for relative entanglement
entropy ER for various concrete states/QFTs [Hollands, Sanders 2017, 104pp]



Overview

Results obtained in [Hollands, Sanders 2017]:

1. 1 + 1-dimensional integrable models

2. d+ 1-dimensional CFTs

3. Area law

4. Free quantum fields

5. Charged states

6. General bounds for vacuum and thermal states



1) Integrable models

These models (i.e. their algebras AA) are constructed using an “inverse
scattering” method from their 2-body S-matrix, e.g.

S2(θ) =

2N+1∏
k=1

sinh θ − i sin bk
sinh θ + i sin bk

,

by [Schroer, Wiesbrock 2000, Buchholz,Lechner 2004, Lechner 2008, Allazawi,Lechner 2016, Cadamuro,Tanimoto 2016].
bi = parameters specifying model, e.g. sinh-Gordon model (N = 0).
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Figure: The regions A,B.



Results
For vacuum state ρ0 = |0⟩⟨0| and mass m > 0:

ER(ρ0) ≲ C e−mr cos k .

for mr ≫ 1. The constant depends on the scattering matrix, k > 0, α.

The proof partly relies on estimates of [Lechner 2008, Allazawi,Lechner 2016]

Conjecturally (i.e. modulo one unproven estimate)

ER(ρ0) ≲ C ′ | ln(mr)|α ,

for mr ≪ 1 for constants C ′, α.



2) CFTs in 3 + 1 dimensions
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Define conformally invariant cross-ratios u, v by

u =
(xB+ − xB−)

2(xA+ − xA−)
2
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Results
For vacuum state ρ0 = |0⟩⟨0| in any 3 + 1 dimensional CFT with local
operators {O} of dimensions dO and spins sO, s

′
O :

ER(ρ0) ≤ ln
∑
O

e−τdO
sinh 1

2(sO + 1)θ sinh 1
2(s

′
O + 1)θ

sinh2(12θ)
.

A

B

r

R

Figure: The regions A and B.

For concentric diamonds with radii
R ≫ r this gives

ER(ρ0) ≲ NO

( r

R

)dO
,

where O = operator with the
smallest dimension dO and NO = its
multiplicity.

Tools: Hislop-Longo theorem [Brunetti, Guido, Longo 1994], Tomita-Takesaki theory



3) Area law in asymptotically free QFTs

A and B regions separated by a
thin corridor of diameter ε > 0
in d+ 1 dimensional Minkowski
spacetime, vacuum ρ0 = |0⟩⟨0|.

ε

BiB

AiA

Figure: The the systems A,B

Result (“area law”)

Asymptotically, as ε → 0

ER(ρ0) ≳
{
D2 · |∂A|/εd−1 d > 1,

D2 · ln min(|A|,|B|)
ε d = 1,

where D2 = distillable entropy ED of an elementary “Cbit” pair

Tools: Strong super additivity of ED , bounds [Donald, Horodecki 2002], also [Verch, Werner 2005, Wolf, Werner 2001,HHorodecki 1999]



4) Free massive QFTs

A and B regions in a static time
slice in ultra-static spacetime,
ds2 = −dt2 + h(space); lowest
energy state: ρ0 = |0⟩⟨0|.
Geodesic distance: r

A

B

r

Figure: The the systems A,B

Results (decay + area law)

Dirac field: As r → 0

ER(ρ0) ≲ C| ln(mr)|
∑

j≥d−1

r−j

∫
∂A

aj

where aj curvature invariants of ∂A. Lowest order =⇒ area law.
Klein-Gordon field: As r → ∞ decay

ER(ρ0) ≲ Ce−mr/2

(Dirac: [Islam, to appear])



We expect our methods to yield similar results to hold generally on
spacetimes with bifurcate Killing horizon, as studied by Kay and Wald in 1991
paper:
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5) Charged states

A and B regions, ω any normal
state in a QFT in d+ 1 dim.
χ∗ω state obtained by adding
“charges” χ in A or B.

A

B

charges χi

Figure: Adding charges to state in A

Result

0 ≤ ER(ω)− ER(χ
∗ω) ≤ ln

∏
i

dim(χi)
2ni ,

ni: # irreducible charges χi type i, and

dim(χi) = quantum dimension =
√

Jones index

Tools: Index-statistics theorem [Longo 1990], Jones subfactor theory, Doplicher-Haag-Roberts theory



Examples

Example: d = 1, Minimal model type (p, p+ 1), χ irreducible charge of
type (n,m)

0 ≤ ER(ω)− ER(χ
∗ω) ≤ ln

sin
(
π(p+1)m

p

)
sin

(
πpn
p+1

)
sin

(
π(p+1)

p

)
sin

(
πp
p+1

) .

Example: d > 1, general QFT, irreducible charge χ with Young tableaux

statistics
8 6 5 4 2 1
5 3 2 1
1

.

0 ≤ ER(ω)− ER(χ
∗ω) ≤ 2 ln 5, 945, 940



6) Decay in general QFTs

A and B regions in a time slice
of Minkowski. Distance: r. QFT
satisfies nuclearity condition a la
Buchholz-Wichmann
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Figure: The the systems A,B

Results (Decay)

Vacuum state in massive theory:

ER(ρ0) ≲ C e−(mr)k ,

for any given k < 1 (our C diverges when k → 1)
Thermal state:

ER(ρβ) ≲ Cr−α+1 ,

for α > 1 a constant in nuclearity condition. Similar for massless theory.



Let me end the talk coming back to Kay-Wald 1991 paper, which contained
many more results.

▶ An argument that thermal states do not exist in Kerr due to super
radiance: major physical prediction

▶ A technically precise formulation of the notion of “Hadamard state”:
major role in subsequent further developments of QFT on CST!

▶ An explanation of the connection with Tomita-Takesaki theory of v.
Neumann algebras: TTt important for several results in this talk.

I think that these issues deserve further study, in particular 1)! Perhaps
Bernard himself will get involved in this, or perhaps he will carry further
many of his other beautiful ideas such as:

▶ His insightful no-go theorems for quantum field theories on spacetimes
with “closed timelike curves” [Kay, Wald, and Radzikowski 1997]

▶ His pioneering and beautifully simple explanation/calculation of the
Casimir effect on a torus, which was an important inspiration for later
work on the renormalization problem in perturbative QFT, and the
notion of “local and covariance” [Kay 1979]

▶ His pioneering work on (classical) linear stability of Schwarzschild
spacetime [Kay, Wald 1987]



... or perhaps he will do something completely different. At any rate:

Happy Birthday, Bernard!


