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The need for local observables
Consider a Classical or a Quantum Field Theory on an n-dim.
spacetime M.

I In QFT, 〈φ̂(x)φ̂(y)〉 is singular for some pairs of (x , y).
I In classical FT, {φ(x), φ(y)} is singular for some pairs of (x , y).
I Instead, use smearing

φ(α̃) =

∫
M
φ(x)α(x) dx̃

so that 〈φ̂(α̃)φ̂(β̃)〉 and {φ(α̃), φ(β̃)} are always finite, provided
I α̃, β̃ are smooth n-forms on M,
I α̃, β̃ have compact supports.

I Smoothness diffuses singularities.
Compactness ensures convergence of all integrals.

I Support of a functional: suppφ(α̃) = supp α̃ ⊂ M.
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Local observables
I Field φ is a section of some bundle π : F → M (πk : JkF → M).
I Local observables may be non-linear and depend on

derivatives (jets). An n-form α̃ = α(x , φ(x), ∂φ(x), · · · ) dx̃ on JkF

defines a local observable Aφ =

∫
M

(jkφ)∗α̃,

provided

supp Aφ = πk supp α̃

is compact!
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Local observables in gauge theory (no gravity)

I Let G be the group of gauge transformations.
I Gauge transformations g ∈ G act on JkF (hence jkφ 7→ g · jkφ).
I No gravity: G fixes the fibers of πk : JkF → M.

Aφ =

∫
M

(jkφ)∗α̃

is G -invariant provided

g∗α̃ = α̃ + d(· · ·)
and

supp Aφ is compact!
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No (such) local observables in gravity

I Gravity is General Relativity (GR), F = S2T ∗M, G = Diff(M).
I Diffeomorphisms do not fix the fibers of πk : JkF → M.

In fact, diffeomorphisms act transitively on these fibers.
I M is never compact, as needed by global hyperbolicity.

supp Aφ = supp α̃
compact

⇓

g∗α̃ 6= α̃ + d(· · ·)

⇓

Aφ =

∫
M

(jkφ)∗α̃

is not G -invariant!
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Relaxing locality: an explicit example
I Take dim M = 4. Write the dual Weyl tensor as

∗
W ab

cd = Wabc′d ′εc′d ′cd = εaba′b′W a′b′cd .

I Make use of curvature scalars (Komar-Bergmann 1960-61)

b1 = Wab
cdWcd

ab, b3 = Wab
cdWcd

ef Wef
ab,

b2 = Wab
cd
∗

W cd
ab, b4 = Wab

cdWcd
ef
∗

W ef
ab.

I Let ϕ be a generic metric (det |∂bi/∂x j | 6= 0) and let
β = (b1[ϕ](x),b2[ϕ](x),b3[ϕ](x),b4[ϕ](x)) for some x ∈ M.

I Take a : R4 → R, with sufficiently small compact support containing β, let
α̃ = a(b) db1 ∧ db2 ∧ db3 ∧ db4 on Jk≥2F

and Aφ =

∫
M

(jkφ)∗α̃.

I Aφ is well-defined on a Diff-invariant neighborhood U 3 ϕ among all
metrics φ such that R[φ]ab = 0. Aφ is Diff-invariant.

I Peierls bracket well defined: {A,A′}φ =
∫

M×M
δAφ

δφ(x) · Eφ(x , y) · δA′
φ

δφ(x) .
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Some history of the idea
I Komar, Bergmann: PRL 4 432 (1960), RMP 33 510 (1961)

Curvature scalars as coordinates, example with (b1,b2,b3,b4).
I DeWitt: Ch.8 in Gravitation: Intro. Cur. Ris. (1963), L. Witten (ed.)

Applied K-B idea to GR+Elasticity (matter as coordinates),
computed Poisson brackets by Peierls method.

I Brown, Kuchař: PRD 51 5600 (1995)
More matter (dust) as coordinates.

I Rovelli, Dittrich: PRD 65 124013 (2002), CQG 23 6155 (2006)
Conceptual interpretation in terms of ‘partial’ observables,
fields as coordinates in Hamiltonian formalism.

I Giddings, Marolf, Hartle: PRD 74 064018 (2006)
Explicit perturbative computation on de Sitter,
pointed out IR problems.

I Brunetti, Rejzner, Fredenhagen: [arXiv:1306.1058v4] (Apr 2015)
Recalled K-B, B-K, R-D ideas in the context of the BV method.
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New notion of local and gauge invariant observables
I Moduli spaceMk = JkF/G R←− JkF , quotient by gauge sym-s.
I Differential invariant α̃ = R∗β̃ for some n-form β̃ onMk .
I Aφ =

∫
M(jkφ)∗α̃, with jkφ(M) ∩ supp α̃ compact for every φ ∈ U .

I Aφ may be defined only on an open subset U ⊂ S of (covariant)
phase space. Local charts!

I NB: Two metrics φ and ψ are Diff-equivalent iff Rφ = Rψ inMk .
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Differential invariants of fields (algebra)
I In any gauge theory, the group G of gauge trans. acts on JkF .
I Differential invariants: scalar G -invariant functions on JkF .
I Theorem (Lie-Tresse 1890s, Kruglikov-Lychagin 2011):

I (generically) all differential invariants (all k <∞) are generated by
I a finite number of invariants and
I a finite number of differential operators satisfying
I a finitely generated set of differential identities.

I Examples
I Non-gauge theory: every function on Jk F .
I Yang-Mills theory: invariant polynomials of curvature dAA.
I Gravity: curvature scalars, built from Riemann R, ∇R, ∇∇R, . . .

I Gauge invariant observables: let α̃ = a(b1, . . . ,bm) db1 ∧ · · · ∧ dbn,
for some a : Rm → R and differential invariants bi , i = 1, . . . ,m ≥ n,

then Aφ =

∫
M

(jkφ)∗α̃ is well-defined and gauge invariant,

provided supp [(jkφ)∗α̃] is compact.
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Moduli spaces of fields (geometry)
I In any gauge theory, the group G of gauge trans. acts on Jk F .

I Moduli space: quotient spaceMk = (Jk F \ Σk )/G (Σk is singular).

I Differential invariants are coordinates, separating points, onMk .

I Denote by R : Jk F →Mk the quotient map. Two (generic) field
configurations φ and ϕ are gauge equivalent iff the images of Rφ(M)
and Rϕ(M) coincide as submanifolds ofMk (for high k ).

I Differential identities among differential invariants define a PDE Ek on
n-dimensional submanifolds ofMk , identifying submanifolds like Rφ(M).

I Finite generation means that there exists a k ′ such that allMk and Ek

(k > k ′) can be recovered fromMk ′
and Ek ′

.

I Choose compactly supported n-form α̃ onMk and U such that φ ∈ U
implies Rφ(M) ∩ supp α̃ is compact. Then U is G -invariant,

Aφ =

∫
M

(jkφ)∗R∗α̃ is well-defined and gauge invariant,

and the Aφ separate G -orbits in U .
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Precise results, main limitations
I Goal: Subset of C∞(S) of gauge invariant fun-s, separating the G -orbits.

I The idea of generalized local observables has been around for a while.
Can they give a complete solution? Not quiet.

I (1) Problem with highly symmetric configurations.
Invariants do not separate all G -orbits.

I YM: non-trivial local holonomy.
I GR: Killing isometries.

I (2) Problem with infinitely repeating, nearly equivalent configurations.
The integrals diverge.

I Good news! (IK [arXiv:1503.03754])
I (1) and (2) are the only obstacles, generic configurations avoid them.
I Orbits of generic configurations are separated.
I A generic configuration has a neighborhood of generic configurations.

I Challenge: Precisely characterize generic configurations.
I (1) is easy: jet transversality theorem.
I (2) is harder: requires a variation on the density of embeddings.
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Conclusion

I Local gauge invariant observables are important in both
Classical (non-perturbative construction) and Quantum
(perturbatively renormalized) Field Theory.

I Usual restriction on “compact support” excludes gravitational
gauge theories.

I Relaxing the support conditions opens the door to a large class of
gauge invariant observables (even for gravitational theories),
defined using differential invariants or moduli spaces of fields.
They separate gauge orbits on open subsets of the phase space.

I The Peierls formalism computes their Poisson brackets.
I Limitations:

I Observables may not be globally defined on all of phase space.
I Naive approach separates only generic phase space points

(e.g., metrics without isometries and without near periodicity).
I Need to connect with operational description of observables.
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Thank you for your attention!


