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The need for local observables

Consider a Classical or a Quantum Field Theory on an n-dim.
spacetime M.

» In QFT, ($(x)d(y)) is singular for some pairs of (x, y).
» In classical FT, {¢(x), #(y)} is singular for some pairs of (x, y).
» Instead, use smearing

o(d) = /M H(x)a(x) dx

so that (3(&)3(3)) and {4(&), ¢(5)} are always finite, provided

> @&, 3 are smooth n-forms on M,
» @&, 5 have compact supports.

» Smoothness diffuses singularities.
Compactness ensures convergence of all integrals.

» Support of a functional: supp ¢(&) = suppa C M.
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Local observables

» Field ¢ is a section of some bundle 7: F — M (7%: JKF — M).

» Local observables may be non-linear and depend on
derivatives (jets). An n-form a = a(x, ¢(x), d¢(x),---)dx on JKF

defines a local observable A¢—/(jk¢)*o"z,
M

provided
supp As = 7" supp é

is compact!
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Local observables in gauge theory (no gravity)

» Let ¢ be the group of gauge transformations.
» Gauge transformations g € ¢ act on JXF (hence j¢ — g - jX¢).
» No gravity: ¢ fixes the fibers of 7%: JKF — M.

Ay = / (o) a
M
is ¥-invariant provided
ga=a+d(--)

and
supp A, is compact!
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No (such) local observables in gravity

» Gravity is General Relativity (GR), F = S?T*M, &4 = Diff(M).
» Diffeomorphisms do not fix the fibers of 7/¢: JKF — M.
In fact, diffeomorphisms act transitively on these fibers.

» M is never compact, as needed by global hyperbolicity.

supp A, = supp &
compact

I3
ga£atd-)
I

A= [ (Foya
is not ¢-invariant!
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Relaxing locality: an explicit example
» Take dim M = 4. Write the dual Weyl tensor as
W™ = Wan 72”9 = e apty WP,
» Make use of curvature scalars (Komar-Bergmann 1960-61)
b' = Wap™ Wy, b3 = Wiap® Wy W,
B2 = Wy V*Vcdab’ bt = W% Wy l}kvefab'

» Let o be a generic metric (det |0b'/0x/| # 0) and let
= (b'[¢](x), Pl¢](x). B[] (x), b*[](x)) for some x € M.

» Take a: R* — R, with sufficiently small compact support containing 3, let
& = a(b)db' A db? A db® A db* on JKZ2F
and A, — / (F)"é.
M

» A, is well-defined on a Diff-invariant neighborhood ¢/ > ¢ among all
metrics ¢ such that R[¢]a» = 0. A, is Diff-invariant.
> Peierls bracket well defined: {A, ALy = [y, 1y 102 - Es(X.Y) - s
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Some history of the idea

» Komar, Bergmann: PRL 4 432 (1960), RMP 33 510 (1961)
Curvature scalars as coordinates, example with (b', b2, b3, b*).

DeWitt: Ch.8 in Gravitation: Intro. Cur. Ris. (1963), L. Witten (ed.)
Applied K-B idea to GR+Elasticity (matter as coordinates),
computed Poisson brackets by Peierls method.

Brown, Kuchar: PRD 51 5600 (1995)

More matter (dust) as coordinates.

Rovelli, Dittrich: PRD 65 124013 (2002), CQG 23 6155 (2006)
Conceptual interpretation in terms of ‘partial’ observables,
fields as coordinates in Hamiltonian formalism.

Giddings, Marolf, Hartle: PRD 74 064018 (2006)

Explicit perturbative computation on de Sitter,

pointed out IR problems.

Brunetti, Rejzner, Fredenhagen: [arXiv:1306.1058v4] (Apr 2015)
Recalled K-B, B-K, R-D ideas in the context of the BV method.
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New notion of local and gauge invariant observables
Moduli space MK = JKF /7 <& JKF, quotient by gauge sym-s.
Differential invariant & = R*3 for some n-form 3 on Mk,

Ay = [1,(¢)*a, with jK¢(M) N supp & compact for every ¢ € U.

As may be defined only on an open subset i/ C S of (covariant)
phase space. Local charts!

vV vy VvVYy

» NB: Two metrics ¢ and ¢ are Diff-equivalent iff R¢ = Ry in MK,
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Differential invariants of fields (algebra)

» In any gauge theory, the group ¢ of gauge trans. acts on JXF.
» Differential invariants: scalar ¥-invariant functions on JXF.
» Theorem (Lie-Tresse 1890s, Kruglikov-Lychagin 2011):
» (generically) all differential invariants (all k < co) are generated by
» a finite number of invariants and
» a finite number of differential operators satisfying
» a finitely generated set of differential identities.
» Examples
» Non-gauge theory: every function on JXF.
» Yang-Mills theory: invariant polynomials of curvature daA.
» Gravity: curvature scalars, built from Riemann R, VR, VVAR, ...
» Gauge invariant observables: let @ = a(b',..., b™)db' A--- A db",
for some a: R™ — R and differential invariants b’, i =1,...,m > n,

then A, = / (jkgb)*& is well-defined and gauge invariant,
M

provided supp [(j¥¢)*d] is compact.
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Moduli spaces of fields (geometry)

» In any gauge theory, the group ¢ of gauge trans. acts on JXF.
Moduli space: quotient space M* = (JKF \ £X)/4 (£¥ is singular).
Differential invariants are coordinates, separating points, on MX.

v

v

v

Denote by R: JXF — M¥ the quotient map. Two (generic) field
configurations ¢ and ¢ are gauge equivalent iff the images of R¢(M)
and Ry(M) coincide as submanifolds of M (for high k).

Differential identities among differential invariants define a PDE £% on
n-dimensional submanifolds of MX, identifying submanifolds like Rp(M).

v

v

Finite generation means that therg exists a k' such that all M* and £k
(k > k) can be recovered from M and £¥'.

v

Choose compactly supported n-form & on M* and ¢/ such that ¢ € U
implies R¢(M) N supp & is compact. Then U is 4-invariant,

Ay = / (j*¢)*R*a is well-defined and gauge invariant,
M
and the A, separate ¢-orbits in U.

Igor Khavkine (Trento) GR Observables LQP36 30/05/2015 9/11



Precise results, main limitations

» Goal: Subset of C>(S) of gauge invariant fun-s, separating the ¢-orbits

» The idea of generalized local observables has been around for a while
Can they give a complete solution? Not quiet.

> (1) Problem with highly symmetric configurations.
Invariants do not separate all ¢-orbits.

» YM: non-trivial local holonomy.
» GR: Killing isometries.

> (2) Problem with infinitely repeating, nearly equivalent configurations.
The integrals diverge.

» Good news! (IK [arXiv:1503.03754])
» (1) and (2) are the only obstacles, generic configurations avoid them.
» Orbits of generic configurations are separated.
» A generic configuration has a neighborhood of generic configurations.
» Challenge: Precisely characterize generic configurations.
» (1) is easy: jet transversality theorem.
» (2) is harder: requires a variation on the density of embeddings.
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Conclusion

» Local gauge invariant observables are important in both
Classical (non-perturbative construction) and Quantum
(perturbatively renormalized) Field Theory.

Usual restriction on “compact support” excludes gravitational
gauge theories.

Relaxing the support conditions opens the door to a large class of
gauge invariant observables (even for gravitational theories),
defined using differential invariants or moduli spaces of fields.
They separate gauge orbits on open subsets of the phase space.

The Peierls formalism computes their Poisson brackets.

Limitations:
» Observables may not be globally defined on all of phase space.
» Naive approach separates only generic phase space points
(e.g., metrics without isometries and without near periodicity).
» Need to connect with operational description of observables.
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Thank you for your attention!



