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Motivation

Matrices are everywhere in physics, randomness is also everywhere.
Random matrices are applicable to:

I the description of the energy spectra of heavy nuclei

I the large Nc limit of QCD

I random surfaces, 2d quantum gravity

I transport in disordered systems

I string theory

I number theory

I biology

I ....

The constructive program for matrix models was limited to the
case of quartic interaction (V. Rivasseau, 2007; R. Gurau, T.
Krajewski 2014).



The Model
We study the models with monomial interactions of arbitrarily high
even order:

Z (λ,N) :=

∫
dMdM† e−NS(M,M†)

S(M,M†) := Tr{MM† + λ(MM†)p} ,

where M is a complex matrix N×N, p ≥ 2 is integer, λ is complex.
The main result: the free energy is analytic for λ in an open
”pacman domain”, P(ε, η) := {0 < |λ| < η, | arg λ| < π − ε}
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Loop Vertex Representation (Expansion)

To proof the main result we apply and develop LVR(E) machinery,
which is in contrast with traditional constructive methods is not
based on cluster expansions nor involves small/large field
conditions.

I Like Feynman’s perturbative expansion, the LVR(E) allows to
compute connected quantities at a glance: log(forests) =
trees.

I Typically, the convergence of the LVR(E) implies Borel
summability of the usual perturbation series.

I The LVR(E) is an explicit repacking of infinitely many subsets
of pieces of Feynman amplitudes.

I In the case of the matrix and tensor models with a non-trivial
N →∞ limit, the Borel summability obtained by LVR(E) (or
just analyticity) is uniform in the size N of the model.



Main steps of LVR(E)

1. The divergence of the standard perturbation theory is caused
by the to singular growth of the interaction potential at large
fields. Therefore, we derive effective action Seff (M), providing
polynomial interaction ====> Log-type interaction.

2. Taylor expansion

eSeff (M) =
∞∑

n=0

(Seff (M))n

n!
.

3. Replication of fields, by introducing degenerate Gaussian
measure, so

(Seff (M))n ====>
n∏
i

Seff (Mi ) .

4. Application of the BKAR forest formula.

5. Taking the log by reducing the sum over forests to the sum
over trees.

6. Derivation of the bounds for tree LVR(E) amplitudes.



Effective action (1)

The partition function is

Z (λ,N) :=

∫
dM̃dM̃† e−NS(M̃,M̃†) ,

S(M̃, M̃†) := Tr{M̃M̃† + λ(M̃M̃†)p} .

To derive effective action, we perform a change of variables

MM† = M̃M̃† + λ(M̃M̃†)p .

Then,
M̃M̃† = MM†Tp(−λ(MM†)p−1) ,

where Tp is a solution of the Fuss-Catalan algebraic equation

zT p
p (z)− Tp(z) + 1 = 0 .



Effective action (2)

We define

X := MM† , A(X ) := XTp(−λX p−1) .

The Jacobian is

J =
∣∣∣δA(X )

δX

∣∣∣ =
∣∣∣A(X )⊗ 1− 1⊗ A(X )

X ⊗ 1− 1⊗ X

∣∣∣
and the effective action is

Seff (M,M†) = log J = log
[
1⊗ + λ

p−1∑
k=0

Ak (X )⊗ Ap−1−k (X )
]
.



Holomorphic calculus

In the following forest/tree expansion we need to compute multiple
derivatives ∂M , ∂M† , therefore we need to simplify the effective
action.

Given a holomorphic function f on a domain containing the
spectrum of a square matrix X , Cauchy’s integral formula yields a
convenient expression for f (X ),

f (X ) =

∮
Γ

dw
f (w)

w − X
,

provided the contour Γ encloses the full spectrum of X .



Holomorphic calculus
We can therefore write

A(X ) =

∮
Γ

du a(λ, u)
1

u − X

where a(λ, z) = zTp(−λzp−1) and the contour Γ is a finite keyhole
contour enclosing all the spectrum of X .
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The matrix derivative can be easily obtained as

∂A

∂X
=

∮
Γ

du a(λ, u)
1

u − X
⊗ 1

u − X
.



Effective action (3)

The effective action is now given by

Seff (λ,X ) =

∫ λ

0
dt

∮
Γ1

dv1

∮
Γ2

dv2

{∮
Γ0

du φ(t, u, v1, v2)

ψ(t, v1, v2)
}
R(v1, v2,X )

where

φ(λ, u, v1, v2) = −
p−2∑
k=1

1

v1 − u

1

v2 − u
a(λ, u)∂λ

[
λak (λ, v1)ap−k−1(λ, v2)

]
,

ψ(λ, v1, v2) = − 2

v1 − v2
a(λ, v1)∂λ

[
λap−1(λ, v2)

]
,

R(v1, v2,X ) =
[
Tr

1

v1 − X

][
Tr

1

v2 − X

]
.



How to compute log Z
The effective action provides a way to generate convergent
expansion for the partition function

Z (λ,N) =
∞∑

n=0

1

n!

∫
dMdM† exp{−NTrX}Sn

eff .

To compute the logarithm we apply the forest/tree expansion:
forests ====> log ====> trees



BKAR forest formula

n = 2

φ(1) = φ(0) +

∫ 1

0
dt12

( ∂φ

∂x12

)
(t12)

The first term corresponds to the empty forest (|E (F )| = 0) and
the second one to the full forest (|E (F )| = 1).



BKAR forest formula

n = 3



Preparing the application of the forest formula
To generate a convergent LVE, we start by expanding exp[Seff (X )]

Z (λ,N) =
∞∑

n=0

1

n!

∫
dMdM† exp{−NTrX}Sn

eff .

The next step (replicas) is to replace (for the order n) the integral
over the single N × N complex matrix M by an integral over an
n-tuple of such N × N matrices Mi , 1 ≤ i ≤ n.

dµ =====> dµC

with a degenerate covariance Cij = N−1 ∀i , j .∫
dµC M†i |abMj |cd = Cijδadδbc ,

Mi |ab is the matrix element in the row a and column b of the
matrix Mi .

dµC ⇔ dµδ(M1 −M2) · · · δ(Mn−1 −Mn)



Preparing the application of the forest formula

Now the partition function is

Z (λ,N) =
∞∑

n=0

1

n!

∫
dµC

n∏
i=1

Seff (Mi ) ,

it can be represented as a sum over the set Fn of forests F on n
labeled vertices by applying the BKAR formula.

For this, we replace the covariance Cij = N−1 by Cij (x) = N−1xij

(xij = xji ) evaluated at xij = 1 for i 6= j and Cii (x) = N−1 ∀i .



Then the Taylor BKAR formula yields

Z (λ,N) =
∞∑

n=0

1

n!

∑
F∈Fn

∫
dwF ∂FZn

∣∣∣
xij =xF

ij (w)

where∫
dwF :=

∏
(i ,j)∈F

∫ 1

0
dwij , ∂F :=

∏
(i ,j)∈F

∂

∂xij
,

Zn :=

∫
dµC(x)

n∏
i=1

Seff (Mi )

xFij =

{
inf(k,l)∈PF

i↔j
wkl if PFi↔j exists ,

0 if PFi↔j does not exist .

In this formula wij is the weakening parameter of the edge (i , j) of
the forest, and PFi↔j is the unique path in F joining i and j when it
exists.



The derivative with respect to xij transforms into derivatives with

respect to Mi and M†j :

∂F ====> ∂M
F =

∏
(i ,j)∈F

Tr
[ ∂

∂M†i

∂

∂M†j

]
.

∂MTr
1

v − X
= Tr

[ 1

v − X
⊗M†

1

v − X

]

∂†M∂M†Tr
1

v − X
= Tr

[ 1

v − X
M ⊗ 1

v − X
⊗M†

1

v − X

]
+ Tr

[ 1

v − X
⊗M†

1

v − X
M ⊗ 1

v − X

]
+ Tr

[ 1

v − X
⊗ 1⊗ 1

v − X

]
.



The latter derivatives connect ”loop vertices”.

5

v

v

1

1 2 2

1

1 2

2

1

2

2

4

3v

v1

v

Figure: A tree of n − 1 lines on n loop vertices (depicted as rectangular
boxes, hence here n = 5) defines a forest of n + 1 connected components
or cycles C on the 2n elementary loops, since each vertex contains exactly
two loops. To each such cycle corresponds a trace of a given product of
operators in the LVE.



Bounds

I Factorization of the traces provides the possibility to use the
trace bound

|Tr[O...O]| ≤ ‖O‖...‖O‖ .
I On the keyhole contours, the derivatives of the matrix part of

the effective action are bounded by

‖ 1

v i
j − X i

‖ ≤ K (1 + |v i
j |)−1,

‖ 1

v i
j − X i

M i‖ ≤ K (1 + |v i
j |)−1/2 ...

and for the scalar part we have:

|Tp(z)| ≤ K

(1 + |z |)1/p
,

| d

dz
Tp(z)| ≤ K

(1 + |z |)1+ 1
p

.



Bounds

I For each tree amplitude, uniformly in N

|AT (λ,N)| ≤ K n|λ|κpn

I The number of trees grows just as n! ,

I what is compensated by the symmetry factor 1
n! .



The main theorem

Theorem
For any ε > 0 there exists η small enough such that the LVR(E)
expansion is absolutely convergent and defines an analytic function
of λ, uniformly bounded in N, in the ”pacman domain”

P(ε, η) := {0 < |λ| < η, | arg λ| < π − ε},

a domain which is uniform in N. Here absolutely convergent and
uniformly bounded in N means that for fixed ε and η as above
there exists a constant K independent of N such that for
λ ∈ P(ε, η)

∞∑
n=1

1

n!

∑
T ∈Tn

|AT | ≤ K <∞.



Conclusions and Outlook

I Similar results are derived for the Hermitian matrix models

I The techniques used in the work are based on the
re-parametrization invariance and highlight its importance.

I The utilization of the holomorphic calculus methods
drastically simplifies the construction.

I The latter simplification provides the chance to look from a
new perspective to the QFT models, tensor models...
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