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Local Quantum Physics

Algebraic Quantum Field Theory (Local Quantum Physics) is a
mathematically rigorous framework, which allows to investigate
conceptual problems in QFT.

It started as the axiomatic framework of Haag-Kastler [Haag &

Kastler 64]: a model is defined by associating to each region O of
Minkowski spacetime the algebra A(O) of observables that can
be measured in O.

The physical notion of subsystems
is realized by the condition of isotony,
i.e.: O2 ⊃ O1 ⇒ A(O2) ⊃ A(O1).
We obtain a net of algebras.
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Algebraic QFT on curved spacetimes

Conceptual problems of QFT on curved spacetimes can be easily
solved in the algebraic approach, because of the powerful
principle of locality.

The corresponding generalization of AQFT is called locally
covariant quantum field theory [Hollands-Wald 01,

Brunetti-Fredenhagen-Verch 01, Fewster-Verch 12,. . . ].

Main advantages

Local algebras of observables A(O) are defined abstractly, the Hilbert
space representation comes later (this deals with the non-uniqueness of
the vacuum).

Algebras A(O) are constructed using only the local data.

Local features of the theory (observables) are separated from the global
features (states).

Kasia Rejzner Locality and beyond 5 / 26
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Locally covariant quantum field theory (LCQFT)

In the original AQFT axioms we associate
algebras to regions of a fixed spacetimes.
Now we go a step further.

Replace O1 and O2 with arbitrary spacetimes
M = (M, g), N = (N, g′) and require the
embedding ψ : M→ N to be an isometry.

Require that ψ preserves orientations and the
causal structure (no new causal links are
created by the embedding).

Assign to each spacetime M an algebra
A(M) and to each admissible embedding ψ
a homomorphism of algebras Aψ (notion of
subsystems). This has to be done
covariantly.

Kasia Rejzner Locality and beyond 6 / 26
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Locally covariant fields

In the framework of LCQFT, locally
covariant fields are used to identify (put
labels on) observables localized in different
region of spacetime, in the absence of
symmetries.

Let D(O) denote the space of test functions
supported in O. A locally cov. field is a
family of maps ΦM : D(M)→ A(M),
labeled by spacetimes M such that:
Aψ(ΦO(f )) = ΦM(ψ∗f ).

This generalizes the notion of Wightman’s
operator-valued distributions.

M ψ(O)

O

ψ
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Perturbative algebraic quantum field theory

Perturbative algebraic quantum field theory (pAQFT) is a
mathematically rigorous framework that allows to build
interacting LCQFT models.

It combines Haag’s idea of local quantum physics with methods
of perturbation theory.
Main contributions:

Free theory obtained by the formal deformation quantization of
Poisson (Peierls) bracket: ?-product ([Dütsch-Fredenhagen 00,
Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, . . . ]).
Interaction introduced in the causal approach to renormalization
due to Epstein and Glaser ([Epstein-Glaser 73]),
Generalization to gauge theories using homological algebra
([Hollands 08, Fredenhagen-KR 11]).

For a review see the book: Perturbative algebraic quantum field
theory. An introduction for mathematicians, KR, Springer 2016.

Kasia Rejzner Locality and beyond 8 / 26
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Physical input

Spacetime M = (M, g): a smooth manifold M with a smooth
Lorentzian metric g. Assume M to be oriented, time-oriented
and globally hyperbolic (has a Cauchy surface).

Configuration space E(M): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . . ). Typically this is a space
of smooth sections of some vector bundle E π−→ M over M. For
the scalar field: E(M) = C∞(M,R).

Dynamics: we use a modification of the Lagrangian formalism.
Since the manifold M is non-compact, we need to introduce a
cutoff function into the Lagrangian. For the free scalar field

LM(f )(ϕ) =
1
2

∫
(∇µϕ∇µϕ− m2ϕ2)(x)f (x)dµg(x).

Abstractly, a Lagrangian is a locally covariant classical field
(another manifestation of the locality principle).

Kasia Rejzner Locality and beyond 9 / 26
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Observables

Classical observables are modeled as smooth functionals on the
configuration space E(M), i.e. elements of C∞(E(M),R).

The support of F ∈ C∞(E(M),R) is defined as:

supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ,ψ ∈ E(M),

suppψ ⊂ U such that F(ϕ+ ψ) 6= F(ϕ)} .

F is local if it is of the form: F(ϕ) =

∫
M

f (jkx(ϕ)) dµ(x) , where f

is a function on the jet bundle over M and
jkx(ϕ) = (ϕ(x), ∂ϕ(x), ...) (up to order k) is the k-th jet of ϕ at the
point x. Let Floc(M) denote the space of local functionals.
Consider functionals that are multilocal, i.e. they are sums of
products of local functionals. Denote them by F(M); they play
the role of polynomials.

Kasia Rejzner Locality and beyond 10 / 26
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Equations of motion I

Actions S are equivalence classes of Lagrangians L1 ∼ L2 if
supp(L1 − L2)(f ) ⊂ supp df .

The Euler-Lagrange derivative of an ation SM is a map
S′M : E(M)→ D′(M) defined as (thanks to locality):〈
S′M(ϕ), h

〉
=
〈

LM(f )(1)(ϕ), h
〉

, where f ≡ 1 on supph.

Msupp(f )

supp(h)
f ≡ 1

The equation of motion (EOM) is the equation S′M(ϕ) ≡ 0 for an
unknown function ϕ ∈ E(M) and it determines a subspace of
E(M) denoted by ES(M) (on-shell configurations).
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Equations of motion II

In the algebraic spirit, characterize ES(M) by its space of
functions FS(M), given by the quotient FS(M) = F(M)/F0(M),
where F0(M) is generated by the elements of the form:

ϕ 7→
〈
S′M(ϕ),X(ϕ)

〉
= ∂XSM(ϕ),

with X a vector field on E(M), i.e. X ∈ Γ(TE(M)).

Let V(M) denote the space of multilocal vector fields on E(M)
and let δX .

= ∂XSM.

The kernel of δ consists of vector fields X ∈ V(M), which
satisfy

〈
S′M(ϕ),X(ϕ)

〉
= 0 for all ϕ ∈ E(M), i.e. ∂XSM ≡ 0.

These characterize directions in the configuration space E(M) in
which the action S is constant, we call them local symmetries.

Kasia Rejzner Locality and beyond 12 / 26



Algebraic approach to QFT
Quantum gravity

AQFT
LCQFT
pAQFT

Equations of motion II

In the algebraic spirit, characterize ES(M) by its space of
functions FS(M), given by the quotient FS(M) = F(M)/F0(M),
where F0(M) is generated by the elements of the form:

ϕ 7→
〈
S′M(ϕ),X(ϕ)

〉
= ∂XSM(ϕ),

with X a vector field on E(M), i.e. X ∈ Γ(TE(M)).

Let V(M) denote the space of multilocal vector fields on E(M)
and let δX .

= ∂XSM.

The kernel of δ consists of vector fields X ∈ V(M), which
satisfy

〈
S′M(ϕ),X(ϕ)

〉
= 0 for all ϕ ∈ E(M), i.e. ∂XSM ≡ 0.

These characterize directions in the configuration space E(M) in
which the action S is constant, we call them local symmetries.

Kasia Rejzner Locality and beyond 12 / 26



Algebraic approach to QFT
Quantum gravity

AQFT
LCQFT
pAQFT

Equations of motion II

In the algebraic spirit, characterize ES(M) by its space of
functions FS(M), given by the quotient FS(M) = F(M)/F0(M),
where F0(M) is generated by the elements of the form:

ϕ 7→
〈
S′M(ϕ),X(ϕ)

〉
= ∂XSM(ϕ),

with X a vector field on E(M), i.e. X ∈ Γ(TE(M)).

Let V(M) denote the space of multilocal vector fields on E(M)
and let δX .

= ∂XSM.

The kernel of δ consists of vector fields X ∈ V(M), which
satisfy

〈
S′M(ϕ),X(ϕ)

〉
= 0 for all ϕ ∈ E(M), i.e. ∂XSM ≡ 0.

These characterize directions in the configuration space E(M) in
which the action S is constant, we call them local symmetries.

Kasia Rejzner Locality and beyond 12 / 26



Algebraic approach to QFT
Quantum gravity

AQFT
LCQFT
pAQFT

Equations of motion II

In the algebraic spirit, characterize ES(M) by its space of
functions FS(M), given by the quotient FS(M) = F(M)/F0(M),
where F0(M) is generated by the elements of the form:

ϕ 7→
〈
S′M(ϕ),X(ϕ)

〉
= ∂XSM(ϕ),

with X a vector field on E(M), i.e. X ∈ Γ(TE(M)).

Let V(M) denote the space of multilocal vector fields on E(M)
and let δX .

= ∂XSM.

The kernel of δ consists of vector fields X ∈ V(M), which
satisfy

〈
S′M(ϕ),X(ϕ)

〉
= 0 for all ϕ ∈ E(M), i.e. ∂XSM ≡ 0.

These characterize directions in the configuration space E(M) in
which the action S is constant, we call them local symmetries.

Kasia Rejzner Locality and beyond 12 / 26



Algebraic approach to QFT
Quantum gravity

AQFT
LCQFT
pAQFT

Symmetries and the kernel of δ

The space of symmetries includes elements of the form
δ(Λ2V(M)), where Λ2V(M) is the second exterior power of
V(M). Such symmetries are called trivial, because they vanish
on ES(M). Consider a complex

. . .→ Λ2V(M)
δ−→ V(M)

δ−→ F(M)→ 0,

Note that FS(M) = H0(ΛV(M), δ) and H1 characterizes
non-trivial local symmetries.

Working with ΛV(M) instead of FS(M) allows us to quantize
the theory off-shell.

In the presence of non-trivial symmetries, one has to further
extend the configuration space and replace δ with s, the classical
BV operator.

Kasia Rejzner Locality and beyond 13 / 26
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Free scalar field

For the free scalar field the equation of motion is of the form
S′M(ϕ) = Pϕ = 0, where P = −(2 + m2) is the Klein-Gordon
operator.

If M is globally hyperbolic, then P posses the retarded and
advanced Green’s functions ∆R, ∆A. They satisfy:

P ◦∆R/A = idD(M),
∆R/A ◦ (P

∣∣
D(M)

) = idD(M),

supp f

supp ∆A(f )

supp ∆R(f )

Their difference is the causal propagator ∆
.
= ∆R −∆A.
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Classical theory and deformation

The classical Poisson bracket is given by

bF,Gc .=
〈

F(1),∆G(1)
〉

.

Next: decompose ∆ into negative nad positive energy parts (in
curved spacetimes use the notion of wavefront sets), i.e.

i
2∆ = ∆+ − H.

Define the ?-product (deformation of the pointwise product) by:

(F ? G)(ϕ)
.
=
∞∑

n=0

~n

n!

〈
F(n)(ϕ), (∆+)⊗nG(n)(ϕ)

〉
,

where F,G belong to Fµc(M), a larger class of functionals,
which contains the multilocal ones.

Kasia Rejzner Locality and beyond 15 / 26
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Time-ordered product

Let Freg(M) be the space of functionals whose derivatives are
test functions, i.e. F(n)(ϕ) ∈ C∞c (Mn,R),

The time-ordering operator T is defined as:

TF(ϕ)
.
=

∞∑
n=0

~n

n!

〈
F(2n)(ϕ), (∆F)⊗n

〉
,

where ∆F = i
2(∆R + ∆A) + H.

Formally it would correspond to the operator of convolution with
the oscillating Gaussian measure “with covariance i~∆F”,

TF(ϕ)
formal

=

∫
F(ϕ− φ) dµi~∆F (φ) .

We define the time-ordered product ·T on Freg(M)[[~]] by:

F ·T G .
= T(T−1F · T−1G)

Kasia Rejzner Locality and beyond 16 / 26
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Interaction

We now have two products on Freg(M)[[~]]: non-commutative ?
and commutative ·T . They are related by a relation:

F ·T G = F ? G ,

if the support of F is later than the support of G.

Interaction is a functional V (for a moment we assume that it
belongs to Freg(M)). Using the commutative product ·T we
define the formal S-matrix:

S(V)
.
= eiV/~

T = T
(

eT
−1(iV/~)

)
.

Interacting fields are defined by the formula of Bogoliubov:

RV(F)
.
=
(

eiV/~
T

)?−1

?
(

eiV~
T ·T F

)
.

Renormalization problem: extend these structures to local
non-linear functionals (these are not regular. . . ).
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Perspectives in pAQFT

Recent results and perspectives:

Construction of thermal states and introduction of the mollified
Hamiltonian formalism ([Fredenhagen-Lindner 13]) opens up a
perspective for applications to problems like Bose-Einstein
condensation, Lamb shift, etc.

Investigation of topological aspects of LCQFT
([Becker-Schenkel-Szabo 14]) is a first step in generalizing the
framework towards “LCQFT up to homotopy”.

Recent results on the Sine Gordon model ([Bahns-KR 16, to appear

soon...]) go beyond perturbation theory in showing convergence
of the formal S-matrix in the finite regime of the theory.

Now to quantum gravity. . .
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Algebraic approach to QFT
Quantum gravity Effective quantum gravity

Observables

Ways around some problems in QG

Based on: R. Brunetti, K. Fredenhagen, KR, Quantum gravity from
the point of view of locally covariant quantum field theory,
[arXiv:1306.1058], CMP 2016.

Non-renormalizability: use Epstein-Glaser
renormalization to obtain finite results for any fixed
energy scale. Think of the theory as an effective theory.

Dynamical nature of spacetime: make a split of the
metric into background and perturbation, quantize the
perturbation as a quantum field on a curved background,
show background independence at the end.

Diffeomorphism invariance: use the BV formalism to
perform the quantization.
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Algebraic approach to QFT
Quantum gravity Effective quantum gravity
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Intuitive idea

In experiment, geometric structure is probed by
local observations. We have the following data:

Some region O of spacetime where the
measurement is performed,
An observable Φ, which we measure,
We don’t measure the observable (e.g. curvature)
at a point. This is modeled by smearing with a test
function f . For example:

Φ(f ) =

∫
f (x)R(x)dµ(x).

Think of the measured observable as a function of
a perturbation of the fixed background metric:
g = g0 + h. Hence E(M) = Γ((T∗M)⊗s2).

Diffeomorphism transformation: move our
experimental setup to a different region O′.

M
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Local symmetries in gravity

In gravity symmetries arise from vector fields on M i.e. we have
ρ : X(M)→ Γ(TE(M)), defined by

∂ρ(ξ)F(h)
.
=
〈

F(1)(h),Lξ(g0 + h)
〉
,

where ξ(h) ∈ X(M).

A locally covariant field A is called diffeomorphism equivariant

if it is realized as A(M,g0)(f )[h] =

∫
M

Ag(x)f (x), where Ag is a

scalar depending locally and covariantly on the full metric, so
Aχ∗g = Ag ◦ χ for all formal diffeomorphisms χ.
One can characterize the space of classical gauge invariant
on-shell observables as the 0th cohomology of the classical BV
operator s acting on functionals that satisfy a weaker notion of
locality.
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Algebraic approach to QFT
Quantum gravity Effective quantum gravity

Observables

Construction of gauge-invariant observables I

We fix M = (M, g0). We want to construct functionals that
describe relations between classical fields (relational
observables).

Idea: Take an equivariant field Ag and express it in terms of a
coordinate system that depends on other fields.

We realize the choice of a coordinate system by constructing
four equivariant fields Xµg , µ = 0, . . . , 3 which will parametrize
points of spacetime.

We choose a background g0 such that the map

Xg0 : x 7→ (X0
g0
, . . . ,X3

g0
)

is injective.
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Construction of gauge-invariant observables II

Take g = g0 + h sufficiently near to g0 and set

αg = X−1
g ◦ Xg0 .

αg transforms as αχ∗g = χ−1 ◦ αg.
Let Ag be an equivariant field. Then

Ag := Ag ◦ αg = Ag ◦ X−1
g ◦ Xg0 .

is invariant under formal diffeo.’s.
[Ag ◦ X−1

g ](Y) corresponds to the value of the quantity Ag

provided that the quantity Xg has the value Xg = Y . Thus it is a
partial or relational observable (cf. Rovelli, Dittrich, Thiemann).
By considering Ag = Ag ◦ X−1

g ◦ Xg0 and choosing a test density
f , we identify this observable with a field on spacetime:

F =

∫
Ag(x)f (x) .
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Examples:

On generic backgrounds g0 one can use traces of the powers of
the Ricci operator:

Xa
g := Tr(Ra), a ∈ {1, 2, 3, 4}

More examples: [Bergmann 61, Bergmann-Komar 60].

When matter fields are present in the considered model, also
these can serve as coordinates, e.g. the dust fields in the
Brown-Kuchař model [Brown-Kuchař 95]; the scalar field in the
Einstein-Klein-Gordon system.

For an explicit construction on a cosmological background see
the recent work by R. Brunetti, K. Fredenhagen, T.-P. Hack,
N. Pinnamonti and myself: Cosmological perturbation theory
and quantum gravity [arXiv:gr-qc/1605.02573], JHEP 2016.
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Conclusions

More that 60 years after the paper of Haag and Kastler the
locality principle is a powerful paradigm in QFT.

It turned out to be very successful in QFT on curved spacetime
and it pointed a direction towards effective theory of quantum
gravity.

Combined with perturbative methods it gave rise to pAQFT.

It is also interesting and challenging to look at possible
generalizations: non-local quantities in QG, LCQFT up to
homotopy.

More to come!
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Thank you for your attention!
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