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Global anomalies in the path integral

§ Chiral SUp2q doublet: Not anomalous w.r.t. infinitesimal (local) gauge
trafos.

§ But: Anomalous w.r.t. large (global) gauge trafos [Witten 82].

§ As π4pSUp2qq “ Z2, there are compactly supported gauge trafos g that
can not be deformed to the identity.

§ However, one may deform A to Ag via a path Aλ of connections that are
not gauge equivalent to A. Along such a path, the fermion path integral
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changes sign as A is varied to Ag (mod 2 index theorem).
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vanishes, as the contributions from A and Ag always cancel.

§ The theory is thus inconsistent.

§ Non-perturbative effect, not visible in perturbation theory around single
background.



Riemannian vs. Lorentzian

§ The computations of global anomalies involve fermions in background
fields in Riemannian signature.

§ No clear relation to Lorentzian signature.

§ What is an appropriate condition for global anomalies in Lorentzian
signature (based on free fermions in non-trivial backgrounds)?

§ How does a global anomaly render a theory inconsistent?



The framework (I)

§ As in the path integral framework, we formulate a criterion for global
anomalies based on free chiral fermions in generic gauge backgrounds.

§ Gauge backgrounds described by principal bundle connection Ā.

§ Two backgrounds Ā, Ā1 differ by Lie-algebra valued one-form A “ Ā´ Ā1.
§ Locally covariant field theory [Hollands, Wald 01; Brunetti, Fredenhagen, Verch 03]

adapted to the gauge theory setting [Z. 14]: Local covariance also w.r.t.
principal bundle morphisms.

§ Fields provide a consistent assignment of observables to different
backgrounds. Example: The current

jĀpAq “
〈
δ
δĀS ,A

〉
“ ´

ż
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defined by point-splitting w.r.t. the Hadamard parametrix.

§ No local anomalies, i.e., the current is conserved

δ̄jĀpΛq
.
“ jĀpd̄Λq “ 0. (CC)

It is then unique up to charge renormalization [Z. 14]

jĀ Ñ jĀ ` λδ̄F̄ .



The framework (II)

§ When two backgrounds Ā, Ā1 differ only in a compact region, there is a
natural isomorphism of the corresponding algebras, the retarded variation

τ rĀ,Ā1 : ApĀ1q Ñ ApĀq.

§ It acts trivially on observables localized in the past of supppĀ1 ´ Āq.
§ Perturbative agreement (PA) [Hollands, Wald 05] is the requirement that it

should not matter whether one puts quadratic terms in the free or
interaction part of the action:
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§ The infinitesimal retarded variation around Ā in the direction of A is
denoted by δrĀpAq.

§ (PA) can be fulfilled provided that

EĀpA1,A2q
.
“ δrĀpA1qjpA2q ´ δ

r
ĀpA2qjpA1q ´ irjpA2q, jpA1qs “ 0.

In dimension d ď 4, (CC) implies EĀpA1,A2q “ 0 [Z. 15].



The phase of the S matrix

§ Our criterion for the occurrence of a global anomaly will be a non-trivial
phase of the S matrix for ĀÑ Āg . Need to fix the phase of the S matrix.

§ Formally, the S matrix for ĀÑ Ā1 “ Ā` A is given by and fulfills
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“ TĀpe
ijpA1q

qRĀpe
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qτ rĀ,Ā`A1pSĀ`A1pA´ A1qq

§ With the further constraints

SĀp0q “ 1, BλSĀpAλq|λ“0 “ ijĀp 9A0q,

we may integrate S matrix for any path r0, 1s Q λ ÞÑ Aλ from 0 to A:

SĀpAq “ P̄ exp
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(PO)

§ Path independence is equivalent to E “ 0.

§ Unique up to
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Hilbert space representation

§ A representation π̄ : ApĀq Ñ EndpH̄q naturally induces representations

πA
.
“ π̄ ˝ τ rĀ,Ā`A : ApĀ` Aq Ñ EndpH̄q.

§ In the representation, (PO) reads

UpA,A1q
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1
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,

with Aλ a path from A to A1.

§ Q: Is πpjq self-adjoint? Is U well-defined and unitary?

§ Assuming it is,

UpA,A1qUpA1,A2q “ UpA,A2q, UpA,A1q´1
“ UpA1,Aq.

§ Furthermore, V pgq
.
“ UppĀ` Aqg ´ Ā,Aq “ e iφg id is independent of A,

and thus provides a representation of the gauge group Γ8c pM,P ˆAd Gq.

§ If g is deformable to the identity, then, by (PO) and (CC), V pgq “ id.

§ If V pgq ‰ id for some g , then no gauge invariant vector, a global anomaly.

§ Same topological obstructions as in the path integral formalism and similar
computation via gauge non-equivalent connections.



Global anomalies in a Hamiltonian framework

§ Following [Witten 82], assume that the Hilbert space is given by sections over
the space of 3d gauge fields in temporal gauge. The gauge group is then
G “ C8c pR3,Gq with homotopy group

π1pGq “ π4pGq.

§ Physical states are annihilated by the generators QpΛq of G.

§ The non-trivial element of π1pGq must be represented by the identity,
otherwise there are no physical states.

§ The matter contribution to the generators is Qmatter pΛq “ jĀpBq with

Ba
µpxq “ δ0

µΛa
p~xqδpx0

q.

§ E “ 0 ensures
rQpΛq,QpΛ1qs “ iQprΛ,Λ1sq.

§ In the case of a global anomaly, there are no physical states, as integrating
up QpΛq along a non-trivial cycle does not yield the identity.



Perturbative agreement and the Wess-Zumino consistency condition

§ Assume there is a local anomaly, i.e., (CC) does not hold. Can we still
obtain EĀpA,A

1
q “ 0 by giving up the requirement that j is a field?

§ We fix a flat reference connection Ā0 and specify any other background
Ā “ Ā0 ` Ā by a vector potential Ā. Allow jĀ to depend on Ā. We have
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´ δ̄jĀprΛ,Λ

1
sq

!
“ 0.

(WZ)
This is the Wess-Zumino consistency condition.

§ For d “ 4 and flat space-time [Z. 14],
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§ With [Bardeen & Zumino 84]
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one obtains EĀpA1,A2q “ 0 and the consistent anomaly
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.

§ For G “ Up1q and flat space-time, one can obtain (CC) and (WZ), but
then EĀpA1,A2q ‰ 0. Hence, (PA) is stronger than (WZ).



Computation of the SUp2q anomaly

§ Following [Witten 83; Elitzur & Nair 84], compute SUp2q anomaly by embedding
G “ SUp2q Ă SUp3q “ H with π4pHq “ 0. May connect the nontrivial
g P π4pGq by a path in C8c pR4,Hq to the identity. With (PO), the global
anomaly of G is computed by integrating the consistent anomaly of H:

SĀpĀ
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´ Āq “ exp

ˆ
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¯
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where hp0q “ id, hp1q “ g , A “ h´1dh, and Ā is flat.

§ h defines an element of π5pH{Gq and rhs ÞÑ 1
240π2

ş

S5 h
˚
pµ5

Hq is a group
homomorphism, which for the generator h1 of π5pHq is normalized to

1

240π2
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5
Hq “ 2πi .

§ We have the exact sequence

π5pHq “ Z Ñ π5pH{Gq “ Z Ñ π4pGq “ Z2 Ñ π4pHq “ 0.

Hence 1
240π2

ş

S5 h
˚
pµ5

Hq is odd multiple of iπ, so that SĀpĀ
g
´ Āq “ ´id.



Summary & Outlook

Summary:

§ Interpreted global anomalies in a Lorentzian setting.

§ Phase of the S matrix.

§ Pivotal role of perturbative agreement (E “ 0).

§ Relation of perturbative agreement and WZ consistency.

Open issues:

§ Unitarity of implementers in representation.

§ Effect of non-trivial topologies.


