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© Large gauge transformations in external current QED.

@ Asymptotic charges and soft-photon theorems in classical
Maxwell-Lorentz system.

© Towards soft-photon theorems in non-relativistic QED
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Strominger's infrared triangle

(a) Weinberg’s soft—photon theorem

(b) Asymptotic symmetries (c) Memory effects

Soft-photon theorem:
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as a Ward identity w.r.t. an asymptotic symmetry.
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Large gauge transformations in
external current QED
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Asymptotic charges and LGT in this talk

@ By applying the Noether theorem to the global U(1)
symmetry, we obtain the electric charge.
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Asymptotic charges and LGT in this talk

@ By applying the Noether theorem to the global U(1)
symmetry, we obtain the electric charge.

@ By applying the Noether theorem to the local U(1) symmetry,
we obtain asymptotic charges, e.g.:

®(n) = ILm r’n-E(rn), necS?
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Asymptotic charges and LGT in this talk

@ By applying the Noether theorem to the global U(1)
symmetry, we obtain the electric charge.

@ By applying the Noether theorem to the local U(1) symmetry,
we obtain asymptotic charges, e.g.:

®(n) = ILm r’n-E(rn), necS?

© Large gauge transformations (LGT) change these asymptotic
charges.
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Asymptotic charges and LGT

O | will discuss LGT which map the theory from Coulomb to
axial gauges and among different axial gauges.
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Asymptotic charges and LGT

O | will discuss LGT which map the theory from Coulomb to
axial gauges and among different axial gauges.

@ As a by-product we will obtain unitary inequivalence of
different gauges.
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Asymptotic charges and LGT

O | will discuss LGT which map the theory from Coulomb to
axial gauges and among different axial gauges.

@ As a by-product we will obtain unitary inequivalence of
different gauges.

© Indeed, the LGT should change the asymptotic charges

®(n) := lim r’n-E(rn), nec S>

r—oo

which commute with all observables by locality.

W. Dybalski



External current QED in Coulomb gauge

For j = (jo,0) define:

1.
AO,C(tvx) = _*JO(X)7
d3k lkt ik-x 3t
Ac(t,x 3/22/\/27( Ik 1(k) +h.e.),

Ho = He+ 5 / Px Ao c(xVio(x) H 1= Y [ Pk Kla (k)an (k)
A==
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External current QED in Coulomb gauge

For j = (jo,0) define:

1,
AO,C(tax) = _7./0()()7
d3k lk ik-x 3t
Ac(t, x 3/2 Z/\/2|T klt=ikx a5 (k) + hue.),

Ho = Hi+ / Px Ao c(o(x).Hi = 3 [ @k kI35 (K)ar (k)
A=+
Electromagnetic fields:

Ec—ECJ_—i-EC”——atAc-FVA_]o( )
BC:VXAC

W. Dybalski



External current QED in Coulomb gauge

For j = (jo,0) define:

1.
AO,C(tvx) = _*JO(X)7
d3k lk ik-x 3t
Ac(t, x 3/2 Z/\/2|T klt=ikx a5 (k) + hue.),

Ho = He+ 5 / Px Ao c(xVio(x) H 1= Y [ Pk Kla (k)an (k)
A==

Remark: The minimal coupling A,j* is not manifest. But

TGy ~ o)

W. Dybalski



Changing gauge

@ x — x.(x) operator valued distribution, [x.(x), x.(x)] = 0.
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Changing gauge

@ x — x(x) operator valued distribution, [x(x), xc(x")] = 0.

@ Def: W, := el x(t,x) i= ey, (x)eiHe.
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Changing gauge

@ x — x(x) operator valued distribution, [x(x), xc(x")] = 0.
@ Def: W, = emixeli), (£, x) i= oy (x)eHe,
© Gauge transformation of the potential:

A (t,x) := W (Ac(t,x) — Vx(t, x))W*,
AO,e(t7x) = We(AO,C(tax) + atXe(tvx))We*‘
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Changing gauge

@ x — x(x) operator valued distribution, [x(x), xc(x")] = 0.
@ Def: W, = emixeli), (£, x) i= oy (x)eHe,
© Gauge transformation of the potential:

A (t,x) := W (Ac(t,x) — Vx(t, x))W*,
AO,e(t7x) = We(AO,C(tax) + atXe(tvx))We*‘

@ The resulting electromagnetic fields:

E (t,x) = —0:Ac(t,x) — VAo(t,x) = W.Ec(t,x)W,
B (t,x) =V x A(t,x) = W.Bc(t,x)W..
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Changing gauge

@ x — x.(x) operator valued distribution, [x.(x), x.(x)] = 0.
@ Def: W, := e~ixlo) (¢, x) := etHoy (x)etHc,
© Gauge transformation of the potential:

A (t,x) := W (Ac(t,x) — Vx(t, x))W*,
AO,e(t7x) = We(AO,C(tax) + atXe(tvx))We*‘

@ The resulting electromagnetic fields:

E (t,x) = —0:Ac(t,x) — VAo(t,x) = W.Ec(t,x)W,
B (t,x) =V x A(t,x) = W.Bc(t,x)W,.

Q@ H.:= W.HcW satisfies

OHe _
5o — A0.(X)-
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Example: axial gauge

@ Recall A(x) := W(Ac(x) — Vxe(x)) W
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Example: axial gauge

@ Recall A(x) := W(Ac(x) — Vxe(x)) W
@ Impose e- A (x) — 0 fore — 0

W.(e - Ac(x) — e Vxe(x))W* = 0.
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Example: axial gauge

Q Recall A (x) := W.(Ac(x) — Vixe(x)) WS
@ Impose e- A (x) — 0 fore — 0

W,.(e-Ac(x) —e- Vxe(x))W) — 0.
© Solve for y.:

1

Xe,e(x) = 76 v _ 6e . Ac(X).
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Example: axial gauge

Q Recall A (x) := W.(Ac(x) — Vixe(x)) WS
@ Impose e- A (x) — 0 fore — 0

W,.(e-Ac(x) —e- Vxe(x))W) — 0.
© Solve for y.:

1

Xe,e(x) -

O This gives Aec = W Ay gy W + O(e), where

Ay (x) = / dse “FL"(x + es)e,
’ 0
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Example: axial gauge

© The electromagnetic fields have the form

e

Ee,E(X) = ECA_(X) + mjo

Be(x) := Bc(x).

(%),
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Example: axial gauge

© The electromagnetic fields have the form

e

Ee,e(x) = EC,J_(X) + mjo

Be(x) := Bc(x).

(%),

@ Agec(t,x) and He  diverge as € — 0.
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Example: axial gauge

© The electromagnetic fields have the form

e

Ee,e(x) = EC,J_(X) + mjo

Be(x) := Bc(x).

(%),

@ Agec(t,x) and He  diverge as € — 0.

© One can improve the situation by MSY-type angular smearing:

Xeelx) = [ dAe)gle) e+ Acl)

— €
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LGT from Coulomb to axial gauge

@ The LGT from Coulomb to axial is implemented by:

o 1
— a—ixelo) — i e A~
Wee=e exp( o —.e c(o))

= exp(i /000 dse”“(e - Ac)(jo)(se))
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LGT from Coulomb to axial gauge

@ The LGT from Coulomb to axial is implemented by:

o 1

_ el — oo e A

Wee=e exp( o —.e Ac(jo))

-y / ds e~ (e - Ac)(jo)(s€)).
0

@ We can change regularisation from ¢ — 0 to L — oc:

L
Wey = exp(i/o ds (e - Ac) o) (se)).
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LGT from Coulomb to axial gauge

@ The LGT from Coulomb to axial is implemented by:

o .1 :

We,€ — e—’Xe(JO) = exp(—lme ' AC(JO))

= exp(i/ ds e_es(e : AC)UU)(se))'
0

@ We can change regularisation from ¢ — 0 to L — oc:

L
Wey = exp(i/o ds (e - Ac) o) (se)).

© This LGT is very non-local due to non-locality of Ac.
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LGT between two different axial gauges

© The LGT from e to € is given by
We o1 := Wer, LVV>|<

— exp(i / ds' (e - Ac)(o)(s / ds ((—e) - Ac)(io) (s(—e))).
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LGT between two different axial gauges

© The LGT from e to € is given by
We o1 := Wer, LVV>|<

— exp(i / ds' (e - Ac)(o)(s / ds ((—e) - Ac)(io) (s(—e))).

@ We can close the contour without effect on the limit L — oo

War e = expl(i /6 _ Aclo)(r) - dr)
— exp(i /S B(jo)(r) - dS),
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LGT between two different axial gauges

© The LGT from e to € is given by
We o1 := Wer, LVV>|<

— exp(i / ds’ (e - Ac)(io)( / ds ((—e) - Ac)(io) (s(—e))).

@ We can close the contour without effect on the limit L — oo

War e = expl(i /6 _ Aclo)(r) - dr)
— exp(i /S B(jo)(r) - dS),

© This LGT is localized in the region S; defined by the two axes.
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Theorem (Wegener-WD)

For any fixed unit vectors e # €' and all smearing functions f¢), 1,

we have
lim W, el(Ec(fea)+Bo(fm)) x| = gi(Ee(fa)+Be(fm))
L—o00 ? , 5
LILE];O Wel,e?Lei(Ee(fel)+Be(fm)) We*/797L — ei(Ee’(fel)+Be/(fm))’
where

L
We = exp(i/0 ds(e-Ac)(o)(se))

[P / Ac(io)(r) - dr)
S,
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Theorem (Wegener-WD)

For any fixed unit vectors e # €' and all smearing functions f¢), 1,

we have
Lln;o WevLei(EC(fel)-i-Bc(fm))W‘;O:L _ ei(Ee(fel)+Be(fm))’
Jim W, e (EelfaltBelfmliy, | — ei(Eulfa)+Bu(Fn).

However, there are no unitaries U, U s.t.
i(Ec(f Bc(fm _ Li(Ee(fe1)+Be(fm
Ue'(Ec(fe)+Bc(fm)) (jx — oi(Ee(fe)+Be( )),

Uel(Ee(fel)+Be(fm)) U* = ei(Ee/(fel)+Be/(fm))‘

That is different gauges are not unitarily equivalent.

W. Dybalski



Spacelike flux of the electric field

@ Def. ®(n) :=lim, o r’n-E(rn), nc S?
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Spacelike flux of the electric field

@ Def. ®(n) :=lim, o r’n-E(rn), nc S?
@ Def. ®¢(n) :=lim, o [ d®x f(x) r’n- E((x + n)r)
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Spacelike flux of the electric field

@ Def. ®(n) :=lim, o r’n-E(rn), nc S?
@ Def. ®¢(n) :=lim, o [ d®x f(x) r’n- E((x + n)r)
© Fact: In the Coulomb gauge

gn-(n+x) q
4rln+ x|2 — 4Ax’

®%(n) = /d3xf(x)

where g := [ d®x jo(x).
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Spacelike flux of the electric field

@ Def. ®(n) :=lim, o r’n-E(rn), nc S?
@ Def. ®¢(n) :=lim, o [ d®x f(x) r’n- E((x + n)r)
© Fact: In the Coulomb gauge

(n+x) g
¢C —_ 3 f an (n ~
r(m) /d xf(x) 4rln+ x|2 — 4Ax’
where g := [ d®x jo(x).
@ Fact: In the axial gauge

e,y | qfdsf(se) forn=e,
be(n)—{ 0 for n # e.
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Spacelike flux of the electric field

@ Fact: In the axial gauge

er [ qfdsf(se) forn=e,
q’f(")_{ 0 for n # e.
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Spacelike flux of the electric field

@ Fact: In the axial gauge

er [ qfdsf(se) forn=e,
q’f(")_{ 0 for n # e.

@ Thus in the smeared axial gauge

®%(n) = [ dn(e)g(e)of(n) =0
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Spacelike flux of the electric field

@ Fact: In the axial gauge

er [ qfdsf(se) forn=e,
q’f(")_{ 0 for n # e.

@ Thus in the smeared axial gauge
®é(n) = /dQ(e)g(e)dD?(n) =0

Wrong. Exchanging lim,_,o with [ dQ(e) was not legitimate.
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Spacelike flux of the electric field

@ Fact: In the axial gauge

er [ qfdsf(se) forn=e,
q’f(")_{ 0 for n # e.

© Fact: In the smeared axial gauge with g|o, = (g, g|52\5g =0

C,®%(n) forne O
gpy— J Ce®rf g
¢(m) = { 0 for n ¢ O,.
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Spacelike flux of the electric field

@ Fact: In the axial gauge

er [ qfdsf(se) forn=e,
q’f(")_{ 0 for n # e.

© Fact: In the smeared axial gauge with g|o, = (g, g|52\5g =0

C,®%(n) forne O
gpy— J Ce®rf g
¢(m) = { 0 for n ¢ O,.

© As we obtain different flux distributions, the respective gauges
cannot be unitarily equivalent.
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Spacelike flux of the electric field

Fact: In the axial gauge

er [ qfdsf(se) forn=e,
q’f(")_{ 0 for n # e.

Fact: In the smeared axial gauge with g|o, = (g, g|52\5g =0

C,®%(n) forne O
gpy— J Ce®rf g
r(n) = { 0 for n ¢ Og.

As we obtain different flux distributions, the respective gauges
cannot be unitarily equivalent.

Axial gauge and Coulomb gauge can be distinguished inside of
any spacelike string.
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flux(e)
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flux(e)

ﬁiix(e’)

In DHR terms W = exp(i [ B(jo)(r) - dS) is a 'flux carrying field'.
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Asymptotic charges in classical
Maxwell-Lorentz system
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Classical Maxwell-Lorentz system

The classical Maxwell-Lorentz system:

)=-V x E(t,x), 0:E(t,x) =V x B(t,x)—j(t,x),
) = p(t, x), V- B(t,x) =0,
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Classical Maxwell-Lorentz system

The classical Maxwell-Lorentz system:

0:B(t,x) = -V x E(t,x), O0:E(t,x)=V x B(t,x)— j(t,x),
V- E(t,x) = p(t,x), V.-B(t,x)=0,

j(m ) A(t.a(t) + a(t) x By(t.q(1))).

t

© Here p(t, x) := ep(x — q(t)), Jj(t, x) := ep(x — q(t))q(t),

/ E(t, x),
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Classical Maxwell-Lorentz system

The classical Maxwell-Lorentz system:

0:B(t,x) = -V x E(t,x), O0:E(t,x)=V x B(t,x)— j(t,x),
V- E(t,x) = p(t,x), V.-B(t,x)=0,

di it ) = e(E(t,q(t)) + 4(t) x Bu(t.q(1))).

o~

@ Here p(t,x) == ep(x — q(t)), j(t,x) i= eg(x — a(t)a(z),
Eo(ta(0) = [ dPxelalt) - x)E(t.x),

@ Initial conditions: smooth fields s.t. for large | x|

[E(x)| + [B(x)| + [x|(|[VE(x)| + |VB(x)]) < C(|x])~
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Soliton solutions

© By minimizing the total energy of the system at fixed total
momentum, P = P(v) and for V- E(x) = p(x), V-B(x) = 0:

E,(x)= _V¢v,sa(x) +v(v- VQS.,,@(X)),
B.,(X) =-VvX v¢v,ap(x)a

bu(x) = (027 + (v - x)) 712

X
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Soliton solutions

© By minimizing the total energy of the system at fixed total
momentum, P = P(v) and for V- E(x) = p(x), V-B(x) = 0:

E,(x)= _V¢v,sa(x) +v(v- VQS.,,@(X)),
B.,(X) =-VvX v¢v,ap(x)a
dv(x) = °

S (v X))V

@ Given t +— q(t) we define the soliton fields

Es(t,x) := Eq(y)(x —q(t)),  Bs(t,x) := Eq()(x — q(t))
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Soliton solutions

© By minimizing the total energy of the system at fixed total
momentum, P = P(v) and for V- E(x) = p(x), V-B(x) = 0:

E,(x)= _V¢v,sa(x) +v(v- VQS.,,@(X)),
B.,(X) =-VvX v¢v,ap(x)a
dv(x) = °

S (v X))V

@ Given t +— q(t) we define the soliton fields

Es(t,x) := Eq(y)(x —q(t)),  Bs(t,x) := Eq()(x — q(t))

© Fact: For q(t) = qg + vt the soliton fields solve the
Maxwell-Lorentz system.
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Scattering theory

Theorem (Imaikin, Komech, Kunze, Spohn 1997, 2002)

Let t — (E(t, ), B(t, - ), q(t)) be a solution of the
Maxwell-Lorentz system. Then, for |e| sufficiently small,

E(t, %) = Eggo(x — (8)) + Exc(t, X) + Ra(t, %),
B(t,x) = Bg(t)(x — q(t)) + Bsc(t, x) + Ra(t, x),

where

@ (Eg, Bs.) solve the free Maxwell equations. (Emited
radiation).

@ The limit v := limi_ o q(t) exists.

O limisoo [ d®x|R(t,x)[? = 0.
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Asymptotic constants of motion

Theorem (Duc Viet Hoang, WD)

For a solution of the Maxwell-Lorentz system, the limit

E(t,x) = |x||ii>noo x|?E(t, x)

is independent of t and depends only on the direction X := ﬁ
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Asymptotic constants of motion

Theorem (Duc Viet Hoang, WD)

For a solution of the Maxwell-Lorentz system, the limit

E(t,x) = |x||ii>noo x|?E(t, x)

is independent of t and depends only on the direction X := ﬁ

Remark 1: By scattering theory

E(t,x) = E4()(x — q(t)) + Esc(t, x) + Ru(t, x),
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Asymptotic constants of motion

Theorem (Duc Viet Hoang, WD)

For a solution of the Maxwell-Lorentz system, the limit

E(t,x) = |x||ii>noo x|?E(t, x)

is independent of t and depends only on the direction X := |§

Remark 1: By scattering theory

E(t,x) = E4()(x — q(t)) + Esc(t, x) + Ru(t, x),
5()?) = gq(t)(j\() + gsc(t,f() + r1(t,x),

W. Dybalski



Asymptotic constants of motion

Theorem (Duc Viet Hoang, WD)

For a solution of the Maxwell-Lorentz system, the limit

E(t,x) = |x||ii>noo x|?E(t, x)

is independent of t and depends only on the direction X : |i

Remark 1: By scattering theory

t,X) = Ei](t)( - q( )) + Esc( )+ Rl(t’x)’
E(X) = E4(1)(X) + Esc(t, %) + ni(t, x),
E(X) = Eveo (%) + Esc(+00, %)

W. Dybalski



Asymptotic constants of motion

Theorem (Duc Viet Hoang, WD)

For a solution of the Maxwell-Lorentz system, the limit

E(t,x) = |x||ii>noo x|?E(t, x)

is independent of t and depends only on the direction X : |i

Remark 1: By scattering theory

t,x) = Eg()(x — q(t)) + Esc(t, x) + Ru(t, x),
5()?) E; (t)( ) —l—gsc(t X) + r1(t X)
E(X)=Ev (X) + Esc(+00,%) = Ey__ (%) + Ege(—00, X)
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Asymptotic constants of motion

Theorem (Duc Viet Hoang, WD)

For a solution of the Maxwell-Lorentz system, the limit

E(t,x) = |x||ii>noo x|?E(t, x)

is independent of t and depends only on the direction X : |i

Remark 1: By scattering theory

t,x) = Eg()(x — q(t)) + Esc(t, x) + Ru(t, x),
5()?) E; (t)( ) —l—gsc(t X) + r1(t X)
E(X)=Ev (X) + Esc(+00,%) = Ey__ (%) + Ege(—00, X)

The last equality can be considered a soft-photon theorem for this
system.
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Asymptotic constants of motion

Theorem (Duc Viet Hoang, WD)

For a solution of the Maxwell-Lorentz system, the limit

E(t, k) = um) |k|E(t, k)

is independent of t and depends only on the direction k:= Tk
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Asymptotic constants of motion

Theorem (Duc Viet Hoang, WD)

For a solution of the Maxwell-Lorentz system, the limit

E(t, k) = um) |k|E(t, k)

is independent of t and depends only on the direction k:= Tk

Remark 2: By scattering theory

N ~

£(0,k) = &,_ (k) + Ese(+00, k).
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Asymptotic constants of motion

Theorem (Duc Viet Hoang, WD)

For a solution of the Maxwell-Lorentz system, the limit

E(t, k) = |:1i|fo |k|E(t, k)

is independent of t and depends only on the direction k:= Tk

Remark 2: By scattering theory
£(0,k) =&, (k) + Es(+o0, k).

Choose purely longitudinal initial data, then

Eoo(+o0, k) = — P&, (k)
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Asymptotic constants of motion

Theorem (Duc Viet Hoang, WD)

For a solution of the Maxwell-Lorentz system, the limit

E(t, k) = |:1i|fo |k|E(t, k)

is independent of t and depends only on the direction k:= Tk
Remark 2: By scattering theory
£(0,k) =&, (k) + Es(+00, k).

Choose purely longitudinal initial data, then

||m ‘k|Esc(+ooa k) :éSC(+OO7 I,;) = _Ptrévoo(l})
|k|—0
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Asymptotic constants of motion

Theorem (Duc Viet Hoang, WD)

For a solution of the Maxwell-Lorentz system, the limit

E(t, k) = |:1i|fo |k|E(t, k)

is independent of t and depends only on the direction k:= Tk
Remark 2: By scattering theory
£(0,k) =&, (k) + Es(+00, k).

Choose purely longitudinal initial data, then

(Per - Voo )(k - Vo))
1—(k-veo)? /

lim |k|Ege(+00, k) =E(+00, k) = —Pu&,__ (k)= —ie<
|k|—0
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Classical origin of infrared problems

@ We found that Eqc(k) ~ — g (W) for small |k|.
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Classical origin of infrared problems

@ We found that Eqc(k) ~ — g (W) for small |k|.

@ It is often stated, that ‘such fields escape from Fock space’.
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Classical origin of infrared problems

@ We found that Eqc(k) ~ — g (W) for small |k|.

@ It is often stated, that ‘such fields escape from Fock space’.

O For |g) := e?"(6)=2(8)|0) impose for small k

Ey (k) = (g|E_(K)|g).
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Classical origin of infrared problems

@ We found that Eqc(k) ~ — g (W) for small |k|.

@ It is often stated, that ‘such fields escape from Fock space’.
O For |g) := e?"(6)=2(8)|0) impose for small k

Esc(k) = (gE L(K)lg)-
@ This is satisfied by

eplk) v
k) = — = .
80 =~ ok 1 kv
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Classical origin of infrared problems

@ Formally we can write |g) in terms of a Dyson wave operator

lg) = & (&)72@)0) = TeXP(’/ dT/d3x AL(T, X)jv (7, %)) 0),
0

where j,_ (7, X) := ep(X — Voo T)Voo.
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Classical origin of infrared problems

@ Formally we can write |g) in terms of a Dyson wave operator
lg) = e (©)~2(8)0) — TeXP(i/ dT/d3x AL(7, X)jues (7, %))10),
0

where j,_ (7, X) := ep(X — Voo T)Voo.

@ We have E | (1,x) = —0;A, (7, x), hence

&) = Texp( - //OOO dT/d3x /TOO dr'E L (7', x)ju. (1. %))|0)
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Classical origin of infrared problems

@ Formally we can write |g) in terms of a Dyson wave operator
lg) = e (©)~2(8)0) — TeXP(i/ dT/d3x AL(7, X)jues (7, %))10),
0

where j,_ (7, X) := ep(X — Voo T)Voo.

@ We have E | (1,x) = —0;A, (7, x), hence

&) = Texp( - //OOO dT/d3x /TOO dr'E L (7', x)ju. (1. %))|0)

© Thus (g|O|g) = (0]0O]0) for any observable O localized in the
backward lightcone V_. [Cadamuro-W.D. 19]
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Towards soft-photon theorems
in non-relativistic QED
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Non-relativistic QED in Coulomb gauge

O Hilbert space H := L2(R3) ® F.

@ Hamiltonian

1
H= s (pel-eAly(q)

+;/d3X{ L@ EL(x)? 4 (1@ Ve x AL(X))? - }
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Scattering theory

Rigorous scattering theory for the model was developed by
Chen-Fréhlich-Pizzo [2010].

Can be related to Faddeev-Kulish approach [W.D. Nucl. Phys. B,
2017].

WO = fim Mt et / #p UP(t)Va(p)(p) ©0)).

el t—00
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WO = fim Mt et / #p UP(t)Va(p)(p) ©0)).

el t—00

The Dollard modifier U:,D(t) is constructed as follows:

Q@ V=—elA ,(q) — V()= —evpAL  (vp7).
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Scattering theory

Rigorous scattering theory for the model was developed by
Chen-Fréhlich-Pizzo [2010].

Can be related to Faddeev-Kulish approach [W.D. Nucl. Phys. B,
2017].

el t—00

Wity = fim ettt [ ap UD(e)(p)(Ip) [0)).

The Dollard modifier U:,D(t) is constructed as follows:
Q@ V=—elA ,(q) — V()= —evpAL  (vp7).
@ V¥ (1) = eltMovas(rye=iTho = — [ dBx A\ (7, x)ju, (7, X).
(3] U,],D(t) = Texp(—ifot dr V:;S”(T)).

Q U,],D(oo)|0> = |gv,) (formally).
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Scattering theory

© Scattering states including ‘hard" photons:

|wout> - aout(hl) out( )|w0ut>,

where

out () = tlltgo eitHa*(e—i|k\th)e—itH
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Scattering theory

© Scattering states including ‘hard" photons:
|wout> - aout(hl) out(h )|WOUt>7
where

out () = tlltgo eitHa*(e—i|k\th)e—itH

@ S-matrix elements:
i
Sij = (V7"

© The asymptotic velocity of the electron is defined via

: t
Vout = lim e’tH<(t’> —itH — |im @

t—oo t
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Towards soft-photon theorems

Conjecture
Let p € C5°(R3) and p°(k) := |k|3/2s3p(sk). Then the following
holds true

a ou in ou EX k in
i (0 e = 5 [ @kt By
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Towards soft-photon theorems

Conjecture
Let p € C5°(R3) and p°(k) := |k|3/2s3p(sk). Then the following
holds true

. ou in ou “EX k in
i (0 e = 5 [ @kt By

Weinberg's soft-photon theorem:

out out et n inin | .+
(out|a%"t(g)S|in) ~ e[} :07 -5 :Qkﬁlkg] (out|S|in)
q

out
—1 Py q
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Conjecture
Let p € C5°(R3) and p°(k) := |k|3/2s3p(sk). Then the following
holds true

o ou in ou EX k in
i (0 e = 5 [ @kt By
Since for coherent states ay(k)|g) = (g(k) - ek(k))]g> we expect

out in\ __ 3 out E/\(k) in

Jim (W7 (o)) =~ [ @k pli)v; |** 28y

W. Dybalski



Towards soft-photon theorems

Conjecture
Let p € C5°(R3) and p°(k) := |k|3/2s3p(sk). Then the following
holds true

o ou in ou EX k in
i (0 e = 5 [ @kt By
Since for coherent states ay(k)|g) = (g(k) - ek(k))]g> we expect

out in\ __ 3 out E/\(k) in

Jim (W7 (o)) =~ [ @k pli)v; |** 28y

Now it suffices to show, that

B ()~ o) V)

e ut. gy (k) vit-en(k)
V2 1—k-vout 1 —k.yn

W. Dybalski
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Towards soft-photon theorems

We compute:

(aout(p°er) — ain(p’en))

oo
_ / dr o, (e/HTa(e—lkhpsE)\)e—lHT)
—o0

/ dr (eiHTi[V, a(e_i|k|Tpss,\)]e_iHT)

— 00
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Towards soft-photon theorems

We compute:

(aout(p°er) — ain(p’en))

_ / dr o, (e’lHTa(e_"lepssA)e_"HT>
/ dr (eiHTi[V, a( /|k|7-ps€>\)] iHT)

Considering —e£ - A| _(q) € V, this gives

ie

V2 d g / 0k e (K| k|B(k/s)p(k) eI Ok aC)/ 1),
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Towards soft-photon theorems

We compute:

(aout(p°er) — ain(p’en))

_ / dr o, (e’lHTa(e_"lepssA)e_"HT>
— / dr (eiHTi[V, a( /|k|7-ps€>\)] iHT)

Considering —e£ - A| _(q) € V, this gives
ie

d , p(T 5) /d3ks (R[5 (K /5)p( k)& KIT (=k(a(r's)/(7'5))
\f
By first taking s — oo and then integrating over 7/, we get

(k)< -ex(k) Vin'E,\(’A‘)>'

—k-vout 1 —k.yin

V2
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Open problems

@ We have shown that different gauges are unitarily inequivalent.
Can we show that this physically doesn't matter?
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Open problems

@ We have shown that different gauges are unitarily inequivalent.
Can we show that this physically doesn't matter?

@ Are they equivalent in front of an infravacuum?

@ Are they equivalent after restriction to a lightcone?

@ A DHR-type description of a family of different gauges.

© A complete proof of soft-photon theorems and their relation to
asymptotic symmetries.

W. Dybalski



