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Quantum electrodynamics

v

QED one of the most important physical theories. Very accurate predictions.
First model of relativistic QFT [Dirac, Jordan, Pauli (1927-28)].

Naive computations of corrections to the scattering amplitudes or cross
sections are plagued by divergences of two types:

> Ultraviolet problem — short distances and large energies.
*> Infrared problem — large distances and low energies.

In order to deal with the UV problem the renormalization techniques were
developed [Tomanaga, Schwinger, Feynman, Dyson (1946-49)].

By now these techniques are standard v~~» UV problem completely solved.

IR problem still not fully understood.
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Infrared problem in perturbative QED

> IR problem in the construction of objects such as the net of local algebras of
interacting fields or the Green or Wightman functions completely under
control v~ there are no problems with the perturbative definition of QED.

> Problematic property of QED: long-range interactions mediated by massless
photons ~~> evolution of particles is substantially different from the free
evolution even long after or before the collision v~ difficulties in the
construction of scattering operator and differential cross section.

In the talk:
» Infrared problem in description of scattering of particles in perturbative QED.

» Method of the construction of the IR-finite S-matrix using the technique of
adiabatic switching of the interaction [Bogoliubov] and a modified reference
dynamics [Dollard, Kulish, Faddeev].
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|. Physical origin of infrared problem
lI. Gupta-Bleuler formulation of QED
[1l. Perturbative construction of scattering matrix

IV. Physical interpretation of construction



Scattering in classical mechanics — short-range potential

> A non-relativistic classical particle in a short-range potential V, i.e.
|V (Z)] < 722255 with § > 0 (decays faster than the Coulomb potential).

HZ|e

v

Let Z(t) be the position of the particle in space R? as a function of time.

> Assume that the energy of the particle is positive v~ scattering situation.

v

ne shows that there are constants Zout, Uout € suc a
One sh that th tants Zout, T, R3 such that

fli}Ig: |f(t) - fout — tUout| = 0.

v

We say that the trajectory t — Z(t) of the particle is asymptotic in the future
to the trajectory of the free particle t — Tyt + & Uout.
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Scattering in classical mechanics — Coulomb potential

> A non-relativistic particle of mass m moving in the repulsive Coulomb
. " 2
potential V(%) = j—ﬂﬁ
» The velocity of the particle f(t) aquires the value Uy in the limit ¢ — o0
v~ the orbit has a free asymptote.

> However, |Z(t) — Tout| = (Itl) for large |t| v~ the time parametrization of

the actual orbit differs significantly from the time parametrization of the free
asymptote v~ particle on the interacting orbit lags behind the free particle.

> It holds
lim |Z(t) — Zout(t)] = 0,

t—0

where )
e

fout (t) = fout + 17outt lOg |t‘

d7m |v0ut E

» The trajectory ¢t — Z(t) is not asymptotic in the future or past to any
trajectory of a free particle.

» Similar problem appears in the scattering of two-particles interacting via the
Coulomb potential v~ IR problem in the construction of S-matrix in QED.
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Scattering in quantum mechanics — short-range potential

> A non-relativistic particle of mass m in a short-range potential V.
> Hilbert space # = L2(R3), momentum operator j = —iV.
» The free and full Hamiltonians:

P

= o’

7

and the corresponding evolution operators:
U (t) = exp(—itHy), U(t) = exp(—itH).
» Let ¥ € H be a scattering state = there exist states W, ¢, Vi, € H such that:
tkrfoo IU@®)Y = Us () Yout|| = 0,
tlim ||U(t)\11 - Ufr(t)\IJmH =0.
——0

» Scattering matrix SW;, = Woyu.

As expected, the above procedure does not work for long-range potentials such as,
for example, the Coulomb potential.
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Scattering in quantum mechanics — Coulomb potential

>

>

A non-relativistic particle in the repulsive Coulomb potential.

Let =2 2 =2 2
P e’ 1 p e 1
H="—+——, Hp(t) = — + — .
2m  4r|Z| o () 2m  Ar 1Py

be the full Hamiltonian and the so-called Dollard Hamiltonian.
U(ts —t1), Up(ta,t1) — evolution operators — full and reference dynamics.

For every state W € H there exist states W, ¥, € H such that:
i U () — Up(t,0) Wou | =0,
\ lim |U(@)¥ — Up(¢,0)¥;,| = 0.
——00
Modified scattering matrix Snod%in = Yout.

The above method was originally proposed by [Dollard (1964)].

It is applicable to a large class of systems of non-relativistic particles
interacting via long-range potentials [Dereziniski, Gerard (1997)].
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Scattering in quantum mechanics — Coulomb potential

» Two non-relativistic particles interacting via the Coulomb potential.

» In order to define the S-matrix one compares the true evolution of the system
t—>U{t)VeH

with the Dollard reference evolution

62777,
to Up(t)W = Up(t) ¢ Tom—5al g e 94,
> The phase factor is called the Coulomb phase.

> A similar phase factor appears in the amplitude for the Mdller (two electrons)
or Bhabha (electron and positron) scattering in QED.

pl
e
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Quantized electromagnetic field coupled to classical current

> Let F*(x) be a quantized electromagnetic field satisfying the Maxwell
equations with some fixed smooth conserved classical current J#(x) of
spatially compact support.

> Let v € R* a unit timelike vector. Assume J#(z) has future/past asymptotes
lim A3JH(A\v) = 0" pout (v), lim AJ#(—Av) = v pin (v).
A—© A—00

» No incoming radiation condition v~ the field F*” coincides with

FIY(2) = LY (2) + 2 f dty D — ) T (y),

ret
where F{'(z) is the standard free quantum field defined in the Fock space.

» Past LSZ limit of the field F.{ () coincides with the free quantum field
FlY(x) wheres the future limit gives

radiation field )

InZ — KV
Fout(2) = Fy" () + <0f the current J

» Fl'(x) and F!) () are unitarily related if and only if pin = pout
> scattering of charged particles is typically accompanied by emission of
infinitely many soft photons v~ IR problem.
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Quantized electromagnetic field coupled to classical current

Heuristic description of the strategy that will be used in QED.

> Fixed some four-velocity v. Consider modified retarded field

uv o radiation field of some reference
retmod () = Fret () + (current depending only on v and pi,

> Long-range tail of F/ . (x) in frame of observer moving with velocity v

= lim 2 E(t,r7) @

R— N 471"

flux of electric field
in direction 7 € S2

where @ is total electric charge of the current J.

» Let F'”(x) and E!\ (z) be the LSZ asymptotic fields. Unless the asymptotes

out
of the current J coincide, these fields are not unitarily related.

» The outgoing field F'"' (x) contains the radiation emitted by the forward tail

out
of the current which cannot be accommodated in the Fock space.

» The modified S-matrix intertwines the fields

v radiation field v _ radiation field
Fy' (@) + <determined by pin and  Fou(2) determined by pout )
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|. Physical origin of infrared problem
[I. Gupta-Bleuler formulation of QED
[1l. Perturbative construction of scattering matrix

IV. Physical interpretation of construction



Classical electrodynamics

> Notation:

» 1(x) — massive Dirac spinor field,

A, (z) — real massless vector field,

Fu(x) = 0,A,(x) — 0, A,(z) — electromagnetic field tensor,
JH(x) := p(x)y*4p(x) — spinor current,

L(x) := J*(x)A,(x) - interaction vertex.

v v v v

» Action of electrodynamics

ST 0] = [ (T - m)0le) — {Funle) P 0) 4 e£(0))
» Invariance under gauge transformations S[A,, + 0., ¥ exp(iex)] = S[A., ¥].

» Quadratic part Si[A,, ] of the action is invariant under free gauge
transformations Sg[A, + 0. X, V] = Sa[A., ¥] v~ lack of propagators
> problems with perturbative quantization.

> Solution: Introduce a gauge fixing condition H(z) = 0, A*(x) and modify the
action by adding to it an expression quadratic in H.
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Quantization of electrodynamics

> Modified action
Smod[Ay, Ju] = Jd‘*:r <1/)(1)(1¢‘ —m)(z) + %A#(x)g"”DA,,(:L') + eE(m)) .

> If the gauge fixing condition is satisfied, then the equations of motion of the
original and modified action coincide.

» Quadratic part of the modified action has a well-defined propagators.

Gupta-Bleuler quantization of QED

> First quantize the free part of the modified action. Two-point function of A,, is
not positive definite \~~» Krein-Fock space.

» Then, constract the interacting theory perturbatively. Some IR regulator needed
in the intermediate steps: nonzero mass of photon, ie prescription for the Feynman
propagator with finite € > 0, dimensional regularization, adiabatic cutoff...

> Finally, impose the gauge fixing condition H(x) = 0, A"(x). Construct the
physical Hilbert space where this condition is satisfied.
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Quantum electrodynamics

» Wightman and Green functions [Blanchard, Seneor (1975), Lowenstein (1976)].

» Net F(O) of local abstract algebras of interacting fields localized in bounded
spacetime regions O and a corresponding net 2(QO) of algebras of
gauge-invariant observables. [Diitsch, Fredenhagen (1999)].

» QED is a well-defined model of perturbative QFT.

» However, because of long-range interactions there are difficulties in the
construction of objects that depend on long-distance properties.

» In particular, the standard definition of the S-matrix is not applicable because
of non-standard behavior of the Green functions.
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LSZ reduction formulas in massive models

Consider for a moment some model of interacting QF T without long-range
interactions containing an interacting scalar field 1in () of physical mass m.

LSZ procedure [Lehman, Symanzik, Zimmermann (1955)], [Hepp (1965)]
1. Construct the Green functions:

Gn(xh cee 733n) = (Q| T(q/)int('rl)a e 7¢int(x”))Q)'
2. Compute the amputated Green functions:

To(@1y .y 2n) = (Og, +m?) .. (Qp, + MG (21, ..., ).
3. Elements of the scattering matrix are given by

(P1s - DEISIPht 1+ D0) = 27T (Prs o Pl —Ph1s s —Pn)| o2 o
J g

where Z is the residue of the interacting Feynman propagator on the mass
shell (i.e. at p? = m?)
~ iZ

Ga(p) ~ P —mZ 0’ where G (p1,p2) = (27)*3(p1 + p2) Ga(p1)-

>0
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Behavior of electron self-energy in QED

Y(p) = €2 m + ...

< -«
iz 1%
» Perturbative corrections to X(p) are continuous in p close to the mass shell
w~>one can renormalize X(p) such that it vanishes on-shell v~ m is the

physical mass.

» However, the corrections are not differentiable on-shell s residue Z is ill
defined \~ IR divergences in S-matrix elements in perturbation theory.

» It is possible to determine approximate form of corrections to 3(p) close to
the mass shell at each order e”.

» Formal summation gives the following form of the interacting Feynman
propagator in QED close to mass shell [Kibble (1968), Zwanziger (1976)]

~ 1 p—i—m

Ga(p) = P Ty ~ const(p

*» In non-perturbative QED no residue on the mass shell expected
«~~ infraparticle problem [Schroer (1963)] v~ scattering amplitudes
between Fock states with finite number of photons vanish.

5.
B
1-3=

2 _ m2) i
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|. Physical origin of infrared problem
lI. Gupta-Bleuler formulation of QED
[11. Perturbative construction of scattering matrix

IV. Physical interpretation of construction



Methods of dealing with IR problem in perturbative QED

1. Inclusive cross-sections [Yennie, Frautschi, Suura (1961), Weinberg (1965), ...].

> Sum over all outgoing photon configurations with total energy less than some
threshold. Threshold is fixed and corresponds to the sensitivity of the detector.

> States with different content of soft photons are difficult to discriminate
experimentally and have to be all taken into account as possible final states.
2. Modified LSZ procedure [Zwanziger (1974), Papanicolaou (1976), ...
> Standard LSZ limit of the interacting spinor field is ill-defined.
> Construct S-matrix elements using some modified LSZ procedure which takes
into account the non-standard asymptotic behavior of this field.
3. Enlargement of the state space [Chung (1965), Kibble (1968), ...].
> Define S-matrix in a Hilbert space that contains a large class of coherent states
and accommodates radiation typically emitted by scattered charged particles.
4. Modified S-matrix [Kulish, Faddeev (1970), Jauch, Rohlich (1976), ...]

> Compare the full dynamics of the system with some non-trivial reference
dynamics and construct the modified S-matrix.
> Approach used in the talk. Similarities to [Morchio, Strocchi (2016)].

16/31



Scattering matrix in models with short-range interactions

» Reminder: S-matrix in QM with short-range potentials

t—>—0

S= lim Up(~t2)U(ts — t1)Us(t:) = lim Texp <—ief dt HL (¢ ))
1—>—® +

to—+00 to—+00 1

where Hl (t) = Up,(—t)Hin U (t) is the interaction part of the Hamiltonian
in the interaction picture.

‘t;,—>+ 00 u*FK‘(‘y/

{\VomF S'\l’m af/m @z(’kz -'(:4 )

477 =00

> In QED on the heuristic level: HL (t) = §d3% :L(t, %):= §d3F W AY(t, T):.

» Bogoliubov method: choose a switching function g € S(R*) and replace

Jdtfds L(t,T): v Jd‘*xg x) :L(x): .
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Scattering matrix in models with short-range interactions

» Bogoliubov S-matrix with adiabatic cutoff

S(g) = Texp (ie fd‘lx g(m)ﬁ(m))

= Z o Jd‘Lxl cdagg(a1) o g(an) T(L(z1), - L(2a)).
n=0

n!

v

Switching function g € S(R*) plays the role of an infrared regulator.

v

For any g € S(RY) such that g(0) = 1 we define a one-parameter family of
switching functions:
ge(z) = g(ex) for e>0.

v

Physical S-matrix S is obtained by taking the adiabatic limit

SU = 1in(1) S(ge)W.

v

The above procedure is applicable to massive models [Epstein, Glaser (1977)]
but not to QED.
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Modified scattering matrix in quantum mechanics

» Modified scattering matrix is obtained by comparing the evolution of the
system governed by full Hamiltonian H = Hg. + eHiyt with the evolution
governed by some Dollard Hamiltonian Hp(t) = Hg + eHp int(t):

Smod = tllin—loo UD (07t2)U(t2 - tl)UD(tla 0)7

to—+o0

» The above expression can be rewritten in the form

to
Smod = lim Texp (—Hef dt H{ int(t))
t1—>—0 0 ?

to— 40

to 0
x Texp (—iej dt Hilnt(t)) Texp (—HeJ dt Héyint(t)> ,
¢ ¢

1 1

where H{, (t) and Hf, ;. (t) are the interaction parts of the full Hamiltonian

and the Dollard Hamiltonian in the interaction picture.
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Modified scattering matrix in QFT

» Modified scattering matrix with adiabatic cutoff

Sumoa(g) = outgoing » Bogoliubov o incoming
modl¥) = | Dollard modifier S-matrix Dollard modifier /
> Physical scattering matrix is obtained by taking the adiabatic limit

(\II|Smod\I]/) : (\P|Smod<ge)\p/)'

= lim
eN\\0
> Dollard modifiers have to be defined in such a way that:
> they have a simple form,
> they are well-defined for any switching function g € S(R%),
» adiabatic limit of Sy0d(g) exists.

» Separation of IR and UV problem:
> no UV problem in the construction of the Dollard modifiers,
» UV problem in the Bogolibov S-matrix is solve using standard
renormalization techniques,
> to solve IR problem one has to show the existence of adiabatic limit.
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Notation

Krein-Fock space

H= thotons ® errmions

v

() — the vacuum state,

*
m

b*(p), b(p), d*(p), d(p) — electron/positron creation/annihilation operators,

v

a¥(k), a, (k) — photon creation/annihilation operators,

v

v

dpm (p) invariant measure on H,, = {p*> = m? p° > 0} c R*.

Free fields

Au(x) = Jd,uo(k:) (a;‘:(]{;)eik'ﬂ? + (lu(k‘)e_ik'm) 7
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Asymptotic interaction in QED — heuristics

» Standard interaction vertex:
L(x) = JMx) Au(x), JH(x) =y"d(x): .

» Hamiltonian H{ (t) = {d3% L(t, ) formally coincides with

J‘d+hn<p>dunlof)duo<k>b*<p>b@f>az<k>

x (27_‘,)35(13»713! + ]?) ei\/ifz+m2 t*i\/]_)"QerQ t+i| k|t ﬂ(p)’y”u(p’) + ..

» Dollard Hamiltonian Hp(t) is formally given by [Kulish, Faddeev (1970)]

| b)) B @I
» It describes the emission or absorption of a photon by an electron or

positron whose momentum is unchanged in the process (no recoil).
> Unfortunately, it is not UV finite and has to be appropriately modified.

22/31



Asymptotic interaction in QED — definition

Asymptotic interaction vertices
*Cout/in(w) = Jéﬁm/in(x) A#(l’),

where the asymptotic currents J(fut/in

(z) are given by
Ton@) = [ om0 o 01.352) (0 (0)100) — "))

and jgut/in(n,p; x) is defined as follows:
> Consider part of current of free particle of velocity £ in forward/backward lightcone.

» Convolute above current with a smooth charge density n € S(R*), {d*zn(z)=1.

TIMEA

L\GHTCONE

—>
SPACE
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Dollard modifiers

» The Dollard modifiers S2¢

out/ln

(g) are formally given by

Texp (mfd% 9@) I @ )A,Ax)).

v

Because the asymptotic currents commute the above expression coincides with

exp (i [0 g(0) T 0)4,00)

. 62 v
cexp (1% [ 00ty g(000) 00 D (0 = ) 370 (0 )

v

The first factor is responsible for the generation of coherent clouds of
photons which depend on the momentum of the electron/positron.

v

The second factor is the relativistic Coulomb phase.

v

Asymptotic currents are conserved 0 Jout/m( x) = 0 only in sectors with
vanishing electric charge - if total charge is non-zero a modification needed.
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S-matrix in QED

Modified S-matrix with adiabatic cutoff
Smod(1n,V,9) = Seue(n,v,9) S(g) Siw(n,v,9),

where € S(R*), {d*zn(z) =1, is a charge density and v is a four-velocity.

Physical S-matrix in QED is given by

(\I/|Smod(777V)\I’/) (‘I/|Smod(7],Vyge)‘I’/)

= lim
eN\0

v

Above adiabatic limit exists at least in low orders of perturbation theory.

v

Physical S-matrix Spmod(7, V) is gauge invariant and can be consistently
restricted to the physical Hilbert space in which the gauge fixing condition
0 A*(z) = 0 is satisfied.

» In sectors with zero total charge Smoa (), v) is v-independent.
» There exist intertwining operators V (', 7, v) such that:

Stod ("7/7 V) = V(U’7 , V) Smod ("7a V) V(Th 77/7 V)'
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First and second order of perturbation theory

Smod(9) = S25.(9)S(9)5%(g) = 1 + S (9) + €252 (g) + ...

Theorem

lim 1S (g)¥| =0 forall WeD

Assume that the self-energy of the photon and its first derivative vanish on-shell
and the self-energy of electron vanishes on shell.

S [2]

mod

k K ]
Ty N e I
-~
-
7 Y T e !

i

v = lin S (g)W e H exists for all U e D,
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|. Physical origin of infrared problem
lI. Gupta-Bleuler formulation of QED
[1l. Perturbative construction of scattering matrix

IV. Physical interpretation of construction



Net of local algebras of interacting fields

> There is a simple prescription for the construction of the retarded
interacting fields due to Bogolibov.

» C' - polynomial in fields and their derivatives, g — switching function.
> One first constructs first the extended scattering matrix

S(g; h) = Texp (iefd‘la; g(x)L(z) + ifd‘*xh(:c)C(x))

» and uses the Bogolibov formula to define the retarded field Ciet(g; )

5
Oh(x

Cret (g5 ) = (—) S(9)~'S(g; h)

~—

h=0
» Cret(g, z) coincides with the Wick polynomial :C(z): for spacetime points x
which are not in the future of suppg.

» Retarded fields can be used to define a net of local abstract algebras F(O)
of interacting fields localized in a spacetime region O.

> The net satisfies the Haag-Kastler axioms in the sense of formal power
series [Brunetti, Fredenhagen, Rejzner].
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Representation of the net of algebras of interacting fields

>

In order to study global properties of interacting fields one has to consider
their representation in a Hilbert space.

In massive models the vacuum representation in the standard Fock space can
be obtained with the use of the adiabatic limit [Epstein, Glaser (1976)]

T(Cret () := 21\11% Cret(ge, ) U.

The above construction does not work in QED.
Idea: modify the extended scattering matrix

Smod(g;h) = S5u:(9) S(g,h) SiT(9)

and define modified retarded fields Cret,mod(ge, ) using Bogoliubov formula.
Construction of the vacuum representation in QED:

7Tmod(cvret (.’17))\1/ = ll\r‘% Cret,mod(ge; I)‘I’

The above adiabatic limit exists in the Fock space for gauge-invariant fields
(observables) at least in low orders of perturbation theory.
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Properties of the first-order correction to F"  (z)

ret,mod

> Flux of the electric field measured by an observer moving with velocity v:

lim r2E(t,rn) @

7—00 - E,
where @ is the electric charge v~ the Gauss law is satisfied.

» LSZ limit of electromagnetic field exists [Buchholz (1977)]. One shows that
it coincides with the standard expression for the free field but with new
physical creator and annihilator of photons

(k) =al(k)—e|d @b*b —d*(p)d
(k) = ay(k) —e um(p)p — (b (0)b(p) — d*(p)d(p))
which does not coincide with the standard ones a(k), and depend on the
creation/annihilation operators of electrons/positrons b*(p), d*(p).

» State b*(p)§2 with one electron contains infinitely many photons. Electron is
dressed with the radiation field which is chosen in such a way that the sum of its
Coulomb field and the radiation field has a long-range tail independent of the
momentum p of the electron v~ solution of the infraparticle problem.
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Energy-momentum operators

> Assume that the adiabatic limit of the modified scattering matrix and

modified retarded fields exists in each order of perturbation theory.

» There is a representation of the group of translations U,,q(a) such that

Umod(a) Stod Umod(_a) = Smod;
Umod (a) Cret,mod (JJ) Umod(_a) = Cret,mod ($ + a)'

Theorem

1.
2.

> unique vacuum state (2,

> no one-particle massive states

Umod(a) is not unitarily equivalent to the standard Fock representation.

" od have simple form and are
interpreted as the physical energy-momentum operators.

Umod(a) is strongly continuous. Generators P!

Joint spectrum of P | coincides with the forward lightcone and contains

> one-particle massless states, S ) o2/ <— ONE-PHOTON

STATES

> electrons/positrons are
infraparticles.

N VAcuiLm
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Summary and outlook

Main results:
» Method of construction of IR-finite S-matrix in perturbative QED.

> Physical energy-momentum operators.
Details: arXiv:1906.00940

Open problems:
> Proof of existence of adiabatic limit in arbitrary order of perturbation theory.

> Relation between modified S-matrix and the inclusive cross sections.
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