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Quantum electrodynamics

§ QED one of the most important physical theories. Very accurate predictions.
First model of relativistic QFT [Dirac, Jordan, Pauli (1927-28)].

§ Naive computations of corrections to the scattering amplitudes or cross
sections are plagued by divergences of two types:

§ Ultraviolet problem – short distances and large energies.
§ Infrared problem – large distances and low energies.

§ In order to deal with the UV problem the renormalization techniques were
developed [Tomanaga, Schwinger, Feynman, Dyson (1946-49)].

§ By now these techniques are standard ù UV problem completely solved.

§ IR problem still not fully understood.
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Infrared problem in perturbative QED

§ IR problem in the construction of objects such as the net of local algebras of
interacting fields or the Green or Wightman functions completely under
control ù there are no problems with the perturbative definition of QED.

§ Problematic property of QED: long-range interactions mediated by massless
photons ù evolution of particles is substantially different from the free
evolution even long after or before the collision ù difficulties in the
construction of scattering operator and differential cross section.

In the talk:

§ Infrared problem in description of scattering of particles in perturbative QED.

§ Method of the construction of the IR-finite S-matrix using the technique of
adiabatic switching of the interaction [Bogoliubov] and a modified reference
dynamics [Dollard, Kulish, Faddeev].
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I. Physical origin of infrared problem

II. Gupta-Bleuler formulation of QED

III. Perturbative construction of scattering matrix

IV. Physical interpretation of construction



Scattering in classical mechanics – short-range potential

§ A non-relativistic classical particle in a short-range potential V , i.e.
|V p~xq| ď const

1`|~x|1`δ
with δ ą 0 (decays faster than the Coulomb potential).

§ Let ~xptq be the position of the particle in space R3 as a function of time.

§ Assume that the energy of the particle is positive ù scattering situation.

§ One shows that there are constants ~xout, ~vout P R3 such that

lim
tÑ8

|~xptq ´ ~xout ´ t~vout| “ 0.

§ We say that the trajectory t ÞÑ ~xptq of the particle is asymptotic in the future
to the trajectory of the free particle t ÞÑ ~xout ` t~vout.
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Scattering in classical mechanics – Coulomb potential

§ A non-relativistic particle of mass m moving in the repulsive Coulomb

potential V p~xq “ e2

4π
1
|~x| .

§ The velocity of the particle 9~xptq aquires the value ~vout in the limit tÑ8

ù the orbit has a free asymptote.

§ However, | 9~xptq ´ ~vout| “ Op 1
|t| q for large |t| ù the time parametrization of

the actual orbit differs significantly from the time parametrization of the free
asymptote ù particle on the interacting orbit lags behind the free particle.

§ It holds
lim
tÑ8

|~xptq ´ ~xoutptq| “ 0,

where

~xoutptq :“ ~xout ` ~voutt´
e2

4πm

~vout
|~vout|3

log |t|.

§ The trajectory t ÞÑ ~xptq is not asymptotic in the future or past to any
trajectory of a free particle.

§ Similar problem appears in the scattering of two-particles interacting via the
Coulomb potential ù IR problem in the construction of S-matrix in QED.
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Scattering in quantum mechanics – short-range potential

§ A non-relativistic particle of mass m in a short-range potential V .

§ Hilbert space H “ L2pR3q, momentum operator ~p “ ´i~∇.

§ The free and full Hamiltonians:

Hfr “
~p2

2m
, H “

~p2

2m
` V p~xq

and the corresponding evolution operators:

Ufrptq “ expp´itHfrq, Uptq “ expp´itHq.

§ Let Ψ P H be a scattering state ñ there exist states Ψout,Ψin P H such that:

lim
tÑ`8

}UptqΨ´ UfrptqΨout} “ 0,

lim
tÑ´8

}UptqΨ´ UfrptqΨin} “ 0.

§ Scattering matrix SΨin “ Ψout.

As expected, the above procedure does not work for long-range potentials such as,
for example, the Coulomb potential.
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Scattering in quantum mechanics – Coulomb potential

§ A non-relativistic particle in the repulsive Coulomb potential.

§ Let

H “
~p2

2m
`
e2

4π

1

|~x|
, HDptq “

~p2

2m
`
e2

4π

1
|~p|
m |t|

.

be the full Hamiltonian and the so-called Dollard Hamiltonian.

§ Upt2 ´ t1q, UDpt2, t1q – evolution operators – full and reference dynamics.

§ For every state Ψ P H there exist states Ψout,Ψin P H such that:

lim
tÑ`8

}UptqΨ´ UDpt, 0qΨout} “ 0,

lim
tÑ´8

}UptqΨ´ UDpt, 0qΨin} “ 0.

§ Modified scattering matrix SmodΨin “ Ψout.

§ The above method was originally proposed by [Dollard (1964)].

§ It is applicable to a large class of systems of non-relativistic particles
interacting via long-range potentials [Dereziński, Gerard (1997)].
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Scattering in quantum mechanics – Coulomb potential

§ Two non-relativistic particles interacting via the Coulomb potential.

§ In order to define the S-matrix one compares the true evolution of the system

t ÞÑ UptqΨ P H

with the Dollard reference evolution

t ÞÑ UDptqΨ “ Ufrptq e
´i

e2m
4π|~p1´~p2|

log |t|
Ψ P H.

§ The phase factor is called the Coulomb phase.

§ A similar phase factor appears in the amplitude for the Møller (two electrons)

or Bhabha (electron and positron) scattering in QED.

p1 p′1

p2 p′2
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Quantized electromagnetic field coupled to classical current

§ Let Fµνpxq be a quantized electromagnetic field satisfying the Maxwell
equations with some fixed smooth conserved classical current Jµpxq of
spatially compact support.

§ Let v P R4 a unit timelike vector. Assume Jµpxq has future/past asymptotes

lim
λÑ8

λ3Jµpλvq “ vµρoutpvq, lim
λÑ8

λ3Jµp´λvq “ vµρinpvq.

§ No incoming radiation condition ù the field Fµν coincides with

Fµνret pxq “ Fµνfr pxq ` 2

ż

d4y Dretpx´ yq BrµJνspyq,

where Fµνfr pxq is the standard free quantum field defined in the Fock space.

§ Past LSZ limit of the field Fµνret pxq coincides with the free quantum field
Fµνfr pxq wheres the future limit gives

Fµνoutpxq “ Fµνfr pxq `

ˆ

radiation field
of the current J

˙

.

§ Fµνin pxq and Fµνoutpxq are unitarily related if and only if ρin ” ρout
ù scattering of charged particles is typically accompanied by emission of
infinitely many soft photons ù IR problem.
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Quantized electromagnetic field coupled to classical current

Heuristic description of the strategy that will be used in QED.

§ Fixed some four-velocity v. Consider modified retarded field

Fµνret,modpxq “ Fµνret pxq `

ˆ

radiation field of some reference
current depending only on v and ρin

˙

§ Long-range tail of Fµνret,modpxq in frame of observer moving with velocity v
ˆ

flux of electric field
in direction n̂ P S2

˙

“ lim
RÑ8

r2 ~Ept, rn̂q “
Q

4π
,

where Q is total electric charge of the current J .

§ Let Fµνin pxq and Fµνoutpxq be the LSZ asymptotic fields. Unless the asymptotes
of the current J coincide, these fields are not unitarily related.

§ The outgoing field Fµνoutpxq contains the radiation emitted by the forward tail
of the current which cannot be accommodated in the Fock space.

§ The modified S-matrix intertwines the fields

Fµνin pxq`

ˆ

radiation field
determined by ρin

˙

and Fµνoutpxq´

ˆ

radiation field
determined by ρout

˙

.
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Classical electrodynamics

§ Notation:
§ ψpxq – massive Dirac spinor field,
§ Aµpxq – real massless vector field,
§ Fµνpxq :“ BµAνpxq ´ BνAµpxq – electromagnetic field tensor,
§ Jµpxq :“ ψpxqγµψpxq – spinor current,
§ Lpxq :“ JµpxqAµpxq – interaction vertex.

§ Action of electrodynamics

SrAµ, ψs “

ż

d4x

ˆ

ψpxqpi{B ´mqψpxq ´
1

4
FµνpxqF

µνpxq ` eLpxq
˙

.

§ Invariance under gauge transformations SrAµ ` Bµχ, ψ exppieχqs “ SrAµ, ψs.

§ Quadratic part SfrrAµ, ψs of the action is invariant under free gauge
transformations SfrrAµ ` Bµχ, ψs “ SfrrAµ, ψs ù lack of propagators
ù problems with perturbative quantization.

§ Solution: Introduce a gauge fixing condition Hpxq “ BµA
µpxq and modify the

action by adding to it an expression quadratic in H.
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Quantization of electrodynamics

§ Modified action

SmodrAµ, Jµs “

ż

d4x

ˆ

ψpxqpi{B ´mqψpxq `
1

2
Aµpxqg

µν2Aνpxq ` eLpxq
˙

.

§ If the gauge fixing condition is satisfied, then the equations of motion of the
original and modified action coincide.

§ Quadratic part of the modified action has a well-defined propagators.

Gupta-Bleuler quantization of QED

§ First quantize the free part of the modified action. Two-point function of Aµ is

not positive definite ù Krein-Fock space.

§ Then, constract the interacting theory perturbatively. Some IR regulator needed

in the intermediate steps: nonzero mass of photon, iε prescription for the Feynman

propagator with finite ε ą 0, dimensional regularization, adiabatic cutoff...

§ Finally, impose the gauge fixing condition Hpxq “ BµA
µpxq. Construct the

physical Hilbert space where this condition is satisfied.
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Quantum electrodynamics

§ Wightman and Green functions [Blanchard, Seneor (1975), Lowenstein (1976)].

§ Net FpOq of local abstract algebras of interacting fields localized in bounded
spacetime regions O and a corresponding net ApOq of algebras of
gauge-invariant observables. [Dütsch, Fredenhagen (1999)].

§ QED is a well-defined model of perturbative QFT.

§ However, because of long-range interactions there are difficulties in the
construction of objects that depend on long-distance properties.

§ In particular, the standard definition of the S-matrix is not applicable because
of non-standard behavior of the Green functions.
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LSZ reduction formulas in massive models

Consider for a moment some model of interacting QFT without long-range
interactions containing an interacting scalar field ψintpxq of physical mass m.

LSZ procedure [Lehman, Symanzik, Zimmermann (1955)], [Hepp (1965)]

1. Construct the Green functions:

Gnpx1, . . . , xnq “ pΩ|Tpψintpx1q, . . . , ψintpxnqqΩq.

2. Compute the amputated Green functions:

τnpx1, . . . , xnq “ p2x1
`m2q . . . p2xn `m

2qGnpx1, . . . , xnq.

3. Elements of the scattering matrix are given by

pp1, . . . , pk|S|pk`1, . . . , pnq “ Z´n2 τ̃npp1, . . . , pk,´pk`1, . . . ,´pnq
ˇ

ˇ

p2j“m
2,p0ją0

where Z is the residue of the interacting Feynman propagator on the mass
shell (i.e. at p2 “ m2)

G̃2ppq „
iZ

p2 ´m2 ` i0
, where G̃2pp1, p2q “ p2πq

4δpp1 ` p2q G̃2pp1q.
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Behavior of electron self-energy in QED

Σppq “ e2

p p′
` . . .

§ Perturbative corrections to Σppq are continuous in p close to the mass shell
ù one can renormalize Σppq such that it vanishes on-shell ùm is the
physical mass.

§ However, the corrections are not differentiable on-shell ù residue Z is ill
defined ù IR divergences in S-matrix elements in perturbation theory.

§ It is possible to determine approximate form of corrections to Σppq close to
the mass shell at each order en.

§ Formal summation gives the following form of the interacting Feynman
propagator in QED close to mass shell [Kibble (1968), Zwanziger (1976)]

G̃2ppq “
i

{p´m´ Σppq ` i0
„ const

{p`m

pp2 ´m2q
1´ e2

4π2

.

§ In non-perturbative QED no residue on the mass shell expected
ù infraparticle problem [Schroer (1963)] ù scattering amplitudes
between Fock states with finite number of photons vanish.
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Methods of dealing with IR problem in perturbative QED

1. Inclusive cross-sections [Yennie, Frautschi, Suura (1961), Weinberg (1965), ...].

§ Sum over all outgoing photon configurations with total energy less than some
threshold. Threshold is fixed and corresponds to the sensitivity of the detector.

§ States with different content of soft photons are difficult to discriminate
experimentally and have to be all taken into account as possible final states.

2. Modified LSZ procedure [Zwanziger (1974), Papanicolaou (1976), ...].

§ Standard LSZ limit of the interacting spinor field is ill-defined.
§ Construct S-matrix elements using some modified LSZ procedure which takes

into account the non-standard asymptotic behavior of this field.

3. Enlargement of the state space [Chung (1965), Kibble (1968), ...].

§ Define S-matrix in a Hilbert space that contains a large class of coherent states
and accommodates radiation typically emitted by scattered charged particles.

4. Modified S-matrix [Kulish, Faddeev (1970), Jauch, Rohlich (1976), ...]

§ Compare the full dynamics of the system with some non-trivial reference
dynamics and construct the modified S-matrix.

§ Approach used in the talk. Similarities to [Morchio, Strocchi (2016)].
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Scattering matrix in models with short-range interactions

§ Reminder: S-matrix in QM with short-range potentials

S “ lim
t1Ñ´8
t2Ñ`8

Ufrp´t2qUpt2 ´ t1qUfrpt1q “ lim
t1Ñ´8
t2Ñ`8

Texp

ˆ

´ie

ż t2

t1

dt HI
intptq

˙

,

where HI
intptq “ Ufrp´tqHintUfrptq is the interaction part of the Hamiltonian

in the interaction picture.

§ In QED on the heuristic level: HI
intptq “

ş

d3~x :Lpt, ~xq:“
ş

d3~x :ψ {Aψpt, ~xq:.

§ Bogoliubov method: choose a switching function g P SpR4q and replace
ż t2

t1

dt

ż

d3~x :Lpt, ~xq: ù

ż

d4x gpxq :Lpxq: .
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Scattering matrix in models with short-range interactions

§ Bogoliubov S-matrix with adiabatic cutoff

Spgq “ Texp

ˆ

ie

ż

d4x gpxqLpxq
˙

“

8
ÿ

n“0

inen

n!

ż

d4x1 . . . d
4xn gpx1q . . . gpxnqTpLpx1q, . . . ,Lpxnqq.

§ Switching function g P SpR4q plays the role of an infrared regulator.

§ For any g P SpRN q such that gp0q “ 1 we define a one-parameter family of
switching functions:

gεpxq “ gpεxq for ε ą 0.

§ Physical S-matrix S is obtained by taking the adiabatic limit

SΨ “ lim
εÑ0

SpgεqΨ.

§ The above procedure is applicable to massive models [Epstein, Glaser (1977)]
but not to QED.
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Modified scattering matrix in quantum mechanics

§ Modified scattering matrix is obtained by comparing the evolution of the
system governed by full Hamiltonian H “ Hfr ` eHint with the evolution
governed by some Dollard Hamiltonian HDptq “ Hfr ` eHD,intptq:

Smod “ lim
t1Ñ´8
t2Ñ`8

UDp0, t2qUpt2 ´ t1qUDpt1, 0q,

§ The above expression can be rewritten in the form

Smod “ lim
t1Ñ´8
t2Ñ`8

Texp

ˆ

`ie

ż t2

0

dt HI
D,intptq

˙

ˆ Texp

ˆ

´ie

ż t2

t1

dt HI
intptq

˙

Texp

ˆ

`ie

ż 0

t1

dt HI
D,intptq

˙

,

where HI
intptq and HI

D,intptq are the interaction parts of the full Hamiltonian
and the Dollard Hamiltonian in the interaction picture.
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Modified scattering matrix in QFT

§ Modified scattering matrix with adiabatic cutoff

Smodpgq “

ˆ

outgoing
Dollard modifier

˙

ˆ

ˆ

Bogoliubov
S-matrix

˙

ˆ

ˆ

incoming
Dollard modifier

˙

.

§ Physical scattering matrix is obtained by taking the adiabatic limit

pΨ|SmodΨ1q :“ lim
εŒ0

pΨ|SmodpgεqΨ
1q.

§ Dollard modifiers have to be defined in such a way that:
§ they have a simple form,
§ they are well-defined for any switching function g P SpR4q,
§ adiabatic limit of Smodpgq exists.

§ Separation of IR and UV problem:
§ no UV problem in the construction of the Dollard modifiers,
§ UV problem in the Bogolibov S-matrix is solve using standard

renormalization techniques,
§ to solve IR problem one has to show the existence of adiabatic limit.
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Notation

Krein-Fock space

H “ Hphotons bHfermions

§ Ω – the vacuum state,

§ a˚µpkq, aµpkq – photon creation/annihilation operators,

§ b˚ppq, bppq, d˚ppq, dppq – electron/positron creation/annihilation operators,

§ dµmppq invariant measure on Hm “ tp
2 “ m2, p0 ą 0u Ă R4.

Free fields

Aµpxq “

ż

dµ0pkq
`

a˚µpkqe
ik¨x ` aµpkqe

´ik¨x
˘

,

ψapxq “

ż

dµmppq
`

b˚ppquappqe
ip¨x ` dppqvappqe

´ip¨x
˘

.
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Asymptotic interaction in QED – heuristics

§ Standard interaction vertex:

Lpxq “ JµpxqAµpxq, Jµpxq “:ψγµψpxq: .

§ Hamiltonian HI
intptq “

ş

d3~x Lpt, ~xq formally coincides with
ż

dµmppqdµmpp
1qdµ0pkq b

˚ppqbpp1qa˚µpkq

ˆ p2πq3δp~p´ ~p1 ` ~kq ei
?
~p2`m2 t´i

?
~p12`m2 t`i|~k|t uppqγµupp1q ` . . .

§ Dollard Hamiltonian HDptq is formally given by [Kulish, Faddeev (1970)]

ż

dµmppqdµ0pkq b
˚ppqbppqa˚µpkq ei|

~k|t pµ ` . . .

§ It describes the emission or absorption of a photon by an electron or
positron whose momentum is unchanged in the process (no recoil).

§ Unfortunately, it is not UV finite and has to be appropriately modified.

22 / 31



Asymptotic interaction in QED – definition

Asymptotic interaction vertices

Lout{inpxq “ Jµout{inpxqAµpxq,

where the asymptotic currents Jµout{inpxq are given by

Jµout{inpxq “

ż

dµmppq j
µ
out{inpη, p;xq pb

˚ppqbppq ´ d˚ppqdppqq

and jµout{inpη, p;xq is defined as follows:

§ Consider part of current of free particle of velocity p
m

in forward/backward lightcone.

§ Convolute above current with a smooth charge density η P SpR4
q,
ş

d4x ηpxq“1.
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Dollard modifiers

§ The Dollard modifiers Sas
out{inpgq are formally given by

Texp

ˆ

ie

ż

d4x gpxqJµout{inpxqAµpxq

˙

.

§ Because the asymptotic currents commute the above expression coincides with

exp

ˆ

ie

ż

d4x gpxq Jµout{inpxqAµpxq

˙

ˆ exp

ˆ

i
e2

2

ż

d4xd4y gpxqgpyq gµνD
D
0 px´ yq :Jµout{inpxqJ

ν
out{inpyq:

˙

.

§ The first factor is responsible for the generation of coherent clouds of
photons which depend on the momentum of the electron/positron.

§ The second factor is the relativistic Coulomb phase.

§ Asymptotic currents are conserved BµJ
µ
out{inpxq “ 0 only in sectors with

vanishing electric charge ù if total charge is non-zero a modification needed.
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S-matrix in QED

Modified S-matrix with adiabatic cutoff

Smodpη, v, gq “ Sas
outpη, v, gq Spgq S

as
in pη, v, gq,

where η P SpR4q,
ş

d4x ηpxq “ 1, is a charge density and v is a four-velocity.

Physical S-matrix in QED is given by

pΨ|Smodpη, vqΨ
1q “ lim

εŒ0
pΨ|Smodpη, v, gεqΨ

1q

§ Above adiabatic limit exists at least in low orders of perturbation theory.

§ Physical S-matrix Smodpη, vq is gauge invariant and can be consistently
restricted to the physical Hilbert space in which the gauge fixing condition
BµA

µpxq “ 0 is satisfied.

§ In sectors with zero total charge Smodpη, vq is v-independent.

§ There exist intertwining operators V pη1, η, vq such that:

Smodpη
1, vq “ V pη1, η, vqSmodpη, vqV pη, η

1, vq.
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First and second order of perturbation theory

Smodpgq “ Sas
outpgqSpgqS

as
in pgq “ 1` eS

r1s
modpgq ` e

2S
r2s
modpgq ` . . .

Theorem

lim
εŒ0

}S
r1s
modpgεqΨ} “ 0 for all Ψ P D

k

p p′

Assume that the self-energy of the photon and its first derivative vanish on-shell
and the self-energy of electron vanishes on shell.

S
r2s
modΨ :“ lim

εŒ0
S
r2s
modpgεqΨ P H exists for all Ψ P D.

p p′

k k′

p p′ k′

k

p

p′

p1 p′1

p2 p′2
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Net of local algebras of interacting fields

§ There is a simple prescription for the construction of the retarded
interacting fields due to Bogolibov.

§ C – polynomial in fields and their derivatives, g – switching function.
§ One first constructs first the extended scattering matrix

Spg;hq “ Texp

ˆ

ie

ż

d4x gpxqLpxq ` i

ż

d4xhpxqCpxq

˙

§ and uses the Bogolibov formula to define the retarded field Cretpg;xq

Cretpg;xq “ p´iq
δ

δhpxq
Spgq´1Spg;hq

ˇ

ˇ

ˇ

ˇ

h“0

.

§ Cretpg, xq coincides with the Wick polynomial :Cpxq: for spacetime points x
which are not in the future of supp g.

§ Retarded fields can be used to define a net of local abstract algebras FpOq
of interacting fields localized in a spacetime region O.

§ The net satisfies the Haag-Kastler axioms in the sense of formal power
series [Brunetti, Fredenhagen, Rejzner].
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Representation of the net of algebras of interacting fields

§ In order to study global properties of interacting fields one has to consider
their representation in a Hilbert space.

§ In massive models the vacuum representation in the standard Fock space can
be obtained with the use of the adiabatic limit [Epstein, Glaser (1976)]

πpCretpxqqΨ :“ lim
εŒ0

Cretpgε, xqΨ.

§ The above construction does not work in QED.

§ Idea: modify the extended scattering matrix

Smodpg;hq “ Sas
outpgq Spg, hq S

as
in pgq

and define modified retarded fields Cret,modpgε, xq using Bogoliubov formula.

§ Construction of the vacuum representation in QED:

πmodpCretpxqqΨ :“ lim
εŒ0

Cret,modpgε, xqΨ

The above adiabatic limit exists in the Fock space for gauge-invariant fields
(observables) at least in low orders of perturbation theory.
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Properties of the first-order correction to F µν
ret,modpxq

§ Flux of the electric field measured by an observer moving with velocity v:

lim
rÑ8

r2 ~Ept, rn̂q “
Q

4π
,

where Q is the electric charge ù the Gauss law is satisfied.

§ LSZ limit of electromagnetic field exists [Buchholz (1977)]. One shows that
it coincides with the standard expression for the free field but with new
physical creator and annihilator of photons

c˚µpkq “ a˚µpkq ´ e

ż

dµmppq
η̃pkq

p ¨ k
pb˚ppqbppq ´ d˚ppqdppqq

which does not coincide with the standard ones a˚µpkq, and depend on the
creation/annihilation operators of electrons/positrons b˚ppq, d˚ppq.

§ State b˚ppqΩ with one electron contains infinitely many photons. Electron is

dressed with the radiation field which is chosen in such a way that the sum of its

Coulomb field and the radiation field has a long-range tail independent of the

momentum p of the electron ù solution of the infraparticle problem.
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Energy-momentum operators

§ Assume that the adiabatic limit of the modified scattering matrix and
modified retarded fields exists in each order of perturbation theory.

§ There is a representation of the group of translations Umodpaq such that

UmodpaqSmod Umodp´aq “ Smod,

UmodpaqCret,modpxqUmodp´aq “ Cret,modpx` aq.

Theorem

1. Umodpaq is not unitarily equivalent to the standard Fock representation.

2. Umodpaq is strongly continuous. Generators Pµmod have simple form and are
interpreted as the physical energy-momentum operators.

3. Joint spectrum of Pµmod coincides with the forward lightcone and contains

§ unique vacuum state Ω,

§ one-particle massless states,

§ no one-particle massive states

ù electrons/positrons are

infraparticles.
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Summary and outlook

Main results:

§ Method of construction of IR-finite S-matrix in perturbative QED.

§ Physical energy-momentum operators.

Details: arXiv:1906.00940

Open problems:

§ Proof of existence of adiabatic limit in arbitrary order of perturbation theory.

§ Relation between modified S-matrix and the inclusive cross sections.
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