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The free charged field on the flat Minkowski space satisfies the
Klein-Gordon equation

(−� + m2)ψ(x) = 0.
To study the field ψ(x) one introduces various propagators or two-
point functions.



• the forward/backward propagator

G∨/∧(x, y) := 1
(2π)4

∫ e−i(x−y)·p

p2 + m2 ± i0 sgn p0
dp,

• the Feynman/anti-Feynman propagator

GF/F(x, y) := 1
(2π)4

∫ e−i(x−y)·p

p2 + m2 ∓ i0
dp,

• the Pauli–Jordan propagator

GPJ(x, y) := i
(2π)3

∫
e−i(x−y)·p sgn(p0)δ(p2 + m2) dp,

• the positive/negative frequency 2-point function

G(±)(x, y) := 1
(2π)3

∫
e−i(x−y)·pθ(±p0)δ(p2 + m2) dp.



Mathematically, G∨/∧, GF/F are inverses of the Klein Gordon op-
erator

(−� + m2)Gf = G(−� + m2)f = f,

and G(±), GPJ are its bisolutions
(−� + m2)Gf = G(−� + m2)f = 0.



These propagators express various important quantities
of Quantum Field Theory:

• the commutation relations
[ψ(x), ψ∗(y)] = −iGPJ(x, y),

• the vacuum expectation of products of fields
(Ω |ψ(x)ψ∗(y)Ω) = G(+)(x, y),
(Ω |ψ∗(x)ψ(y)Ω) = G(−)(x, y),

• the vacuum expectation of time ordered products of fields
(
Ω

∣∣∣∣∣ T
(
ψ(x)ψ∗(y)

)
Ω

)
= −iGF(x, y).



Note the identities satisfied by the propagators:
GPJ = G∨ −G∧ (0.1)

= iG(+) − iG(−), (0.2)
GF −GF = iG(+) + iG(−), (0.3)
GF + GF = G∨ + G∧, (0.4)

GF = iG(+) + G∧ = iG(−) + G∨, (0.5)
GF = −iG(+) + G∨ = −iG(−) + G∧. (0.6)



The following fact is easy to see:
(1) the Klein-Gordon operator −�+m2 is essentially self-adjoint on
C∞c (R1,3),
(2) For s > 1

2, in the sense 〈t〉−sL2(R1,3) → 〈t〉sL2(R1,3), the
Feynman propagator is the boundary value of the resolvent of the
Klein-Gordon operator:

s-lim
ε↘0

(−� + m2 − iε)−1 = GF.



Quantum field theory on the flat Minkowski space is very simple.
More interesting, but still linear, is QFT on a curved spacetime in the
presence of an external electromagnetic potential A and an external
scalar potential Y , based on the (generalized) Klein-Gordon equation

(
|g|−

1
4(i∂µ + Aµ)|g|

1
2gµν(i∂ν + Aν)|g|−

1
4 + Y

)
ψ = 0.



All the constructions and relations that we described for the flat
Minkowski space generalize easily to the stationary case.
The situation is more complicated in the generic, possibly non-

stationary case.
It is well known that on an arbitrary globally hyperbolic spacetime

the forward, backward and Pauli–Jordan propagators are still well-
defined. We use the name classical propagators as the joint name for
these three propagators. The identity (0.1) still holds. The Pauli–
Jordan propagator is still responsible for the commutation relations
of fields.



The other propagators, which we call non-classical, are more diffi-
cult. In the literature it is often claimed that it makes no sense to
ask for distinguished non-classical propagators on generic spacetimes.
We will argue that on a large class of spacetimes that are asymp-
totically stationary in the future and past there exist distinguished
non-classical propagators.



It is rather obvious that the in/out positive/negative frequency
bisolutions are distinguished. Let us denote them by G(+)

± and G(−)
± .

(The plus/minus in the parentheses corresponds to positive/negative
frequencies; the plus/minus without parentheses corresponds to the
future/past). The identity (0.2) now splits into two independent
identities

GPJ = iG(+)
± − iG(−)

± .



We now have two distinguished vacuum states, the in–vacuum and
the out–vacuum:

(Ω± |ψ(x)ψ∗(y)Ω±) = G
(+)
± (x, y),

(Ω± |ψ∗(x)ψ(y)Ω±) = G
(−)
± (x, y).

Note that the states Ω+ and Ω− satisfy the so-called Hadamard con-
dition about the wave front set, as proven by Gerard and Wrochna.



It is less obvious that the Feynman propagator also possesses a
natural generalization. It describes what in popular science books
is expressed as particles travelling forward in time and antiparticles
travelling backwards in time. After quantization the Feynman prop-
agator satisfies(

Ω+
∣∣∣∣∣ T

(
ψ(x)ψ∗(y)

)
Ω−

)

(Ω+ |Ω−)
= −iGF(x, y)

Note that the identities (0.3)–(0.6) no longer hold. (They are still
true on the level of singularities of the respective functions).



The main goal of Quantum Field Theory is to compute scattering
amplitudes. This is done by evaluating Feynman diagrams, where we
put the Feynman propagator at the lines. Therefore, the Feynman
propagator is a central object in QFT.
In what follows I will describe the construction of the Feynman

propagator, including useful tools from functional analysis.



LetW be a Banach space. We say that a two-parameter family of
bounded operators

R× R 3 (t, s) 7→ R(t, s) ∈ B(W) (∗)
is a strongly continuous evolution onW if for all r, s, t, we have the
identities

R(t, t) = 1l, R(t, s)R(s, r) = R(t, r).
and the map (∗) is strongly continuous.



If R(t, s) = R(t − s, 0) for all t, s, we say that the evolution is
autonomous. Setting R(t) := R(t, 0), we obtain a strongly con-
tinuous one-parameter group. As is well known, we can then write
R(t) = e−itB, where−iB is a certain unique, densely defined, closed
operator called the generator of R(t).
If W is a Hilbert space, then B is self-adjoint if and only if R is

unitary.



Unfortunately, the evolution of the Cauchy data on non-stationary
curved spacetimes is non-autonomous. Besides, it is usually not
unitary for any scalar product.
However, one can often assume that the evolution preserves a class

of equivalent scalar products. To formalize this idea it is convenient
to introduce the concept of Hilbertizable spaces.



LetW be a topological vector space. We say that it is Hilbertizable
if it has a topology of a Hilbert space for some scalar product (· | ·)•
on W .
Let (· | ·)1, (· | ·)2 be two scalar products compatible with a Hilber-

tizable space W . Then there exist constants 0 < c ≤ C such that
c(w |w)1 ≤ (w |w)2 ≤ C(w |w)1.



Cosider a pair of Hilbertizable spaces W−1
2
, W1

2
, where W1

2
is

densely and continuously embedded in W−1
2
.

By the Heinz–Kato Theorem, for α ∈ [−1
2,

1
2] we can interpolate

between these two spaces, obtaining a scale of Hilbertizable spaces

Wα, α ∈ [−1
2
,
1
2

].



Let {B(t)}t∈R be a family of densely defined, closed operators
onW−1

2
. The following theorem, due essentially to Kato, gives suffi-

cient conditions for the existence of a (non-autononomous) evolution
generated by {B(t)}t∈R
Theorem. Suppose that the following conditions are satisfied:



(a)W1
2
⊂ DomB(t) so that B(t) ∈ B(W1

2
,W−1

2
) and t 7→ B(t) ∈

B(W1
2
,W−1

2
) is norm-continuous.

(b) For every t, scalar products (· | ·)−1
2,t

and (· | ·)1
2,t

compatible
with W−1

2
resp. W1

2
have been chosen.

(c)B(t) is self-adjoint in the sense ofW−1
2,t

and the part B̃(t) ofB(t)
in W1

2,t
is self-adjoint in the sense of W1

2,t
.

(d) For C ∈ L1
loc and all s, t
‖v‖−1

2,s
≤ ‖v‖−1

2,t
exp

∣∣∣∣∣∣
∫ t
s C(r) dr

∣∣∣∣∣∣,
‖w‖1

2,s
≤ ‖w‖1

2,t
exp

∣∣∣∣∣∣
∫ t
s C(r) dr

∣∣∣∣∣∣.



Then there exists a unique family of bounded operators {R(t, s)}s,t
onW−1

2
, preservingWα, α ∈ [−1

2,
1
2], called the evolution generated

by B(t), such that:
(i) It is an evolution on Wα, α ∈ [−1

2,
1
2],

(ii) For all w ∈ W1
2
and s, t,

i∂tR(t, s)w = B(t)R(t, s)w,
−i∂sR(t, s)w = R(t, s)B(s)w,

where the derivatives are in the strong topology of W−1
2
.



Consider the inhomogeneous evolution equation
(
∂t + iB(t)

)
v(t) = w(t). (∗∗)

We will say that an operator E• is a bisolution resp. an inverse or
Green’s operator of (∗∗) if

(
∂t + iB(t)

)
E•w = 0 E•

(
∂t + iB(t)

)
v = 0,

resp.
(
∂t + iB(t)

)
E•w = w, E•

(
∂t + iB(t)

)
v = v.



The most obvious bisolutions and inverses are defined by the fol-
lowing integral kernels:

the Pauli-Jordan bisolution EPJ(t, s) := R(t, s),
the forward inverse E∨(t, s) := θ(t− s)R(t, s),
the backward inverse E∧(t, s) := −θ(s− t)R(t, s).

They act on functions t 7→ w(t) as follows:
(E•w)(t) :=

∫
E•(t, s)w(s) ds, • = PJ,∨,∧,

Clearly,
EPJ = E∨ − E∧.



Let S± ∈ B(W0) satisfy S2
± = 1l. In other words, S+ and S− are

two bounded involutions on W0,
Define

Π± := 1
2

(1l + S±), projection onto out/in-particles

Π± := 1
2

(1l− S−), projection onto out/in-antiparticles.

Clearly,
S± = Π± − Π±.



Define E± and E± by the following integral kernels:
the in/out particle bisolution E±(t, s)

:= s-lim
τ→±∞R(t, τ )Π±R(τ, s),

the in/out antiparticle bisolution E±(t, s)
:= − s-lim

τ→±∞R(t, τ )Π±R(τ, s),

provided the above limits exist. Clearly,
EPJ = E± − E±.

E± and E± will describe the 2-point functions of the in- and out-
vacuum.



Set
S±(t) := s-lim

τ→±∞R(t, τ )S±R(τ, t),
Π±(t) := s-lim

τ→±∞R(t, τ )Π±R(τ, t),
Π±(t) := s-lim

τ→±∞R(t, τ )Π±R(τ, t).



We say that the evolution satisfies asymptotic complementarity if
for some, and hence for any t,

W0 = Ran Π−(t) ⊕ Ran Π+(t)
= Ran Π−(t) ⊕ Ran Π+(t)

Suppose that asymptotic complementarity holds. Then there exist
two pairs of complementary projections corresponding to these pairs
of subspaces

Λ−+(t) + Λ+−(t) = 1l,
Λ−+(t) + Λ+−(t) = 1l.



Define the operators E−+ and E−+ by their integral kernels
E−+(t, s) := θ(t− s)R(t, s)Λ−+(s)− θ(s− t)R(t, s)Λ+−(s),
E−+(t, s) := θ(t− s)R(t, s)Λ−+(s)− θ(s− t)R(t, s)Λ+−(s).
E−+ will be called the particle-in—antiparticle-out inverse and
E−+ will be called the antiparticle-in—particle-out inverse. They
are abstract versions of the Feynman and anti-Feynman inverse.



We have the identities

(
E−+ − E−+)

(t, s)− 1
2
(
E+ + E+ + E− + E−

)
(t, s)

= 1
8
R(t, s)Υ(s)−1[S+(s)− S−(s), [S+(s), S−(s)]

]
.

(
E−+ + E−+ − E∨ − E∧

)
(t, s)

=1
4
R(t, s)Υ(s)−1[S−(s), S+(s)].



These identities simplify in some important situations. Suppose
that for any (and hence for all) t

S−(t)S+(t) = S+(t)S−(t).
Then

E−+ + E−+ = E∨ + E∧,

E−+ − E−+ = 1
2

(E+ + E+ + E− + E−).



If the evolution is autonomous, it is natural to assume that S+ =
S− =: S•, requiring that it commutes with the generator B. Then
E± and E± collapse to two bisolutions

E+ = E− =: E•,
E+ = E− =: E•.

We also rename for consistency both in-out inverses:
E−+ =: E••,
E−+ =: E••.

Thus,
E•• + E•• = E∨ + E∧,
E•• − E•• = E• + E•.



A pseudo-unitary space is a complex vector spaceW equipped with
a non-degenerate Hermitian form Q, sometimes called a charge form

W ×W 3 (v, w) 7→ (v|Qw) ∈ C.
If the dimension ofW is infinite, we assume thatW is Hilbertizable
and Q is bounded.
A charge form appears naturally as the complexification of iω,

where ω is the symplectic form.
A bounded invertible operatorR onW will be called pseudo-unitary

or symplectic if
(Rv |QRw) = (v |Qw).



An operator S• on (W , Q) will be called an admissible involution
if S2
• = 1l and the scalar product

(v |w)• := (v |QS•w) = (S•v |Qw)
is compatible with W .
A pseudo-unitary space is called a Krein space if it possesses an

admissible involution.



S• defines a pair of projections

the positive projection Π• := 1
2

(1l + S•),

the negative projection Π• := 1
2

(1l− S•).

Theorem. Let S1, S2 be a pair of admissible involutions on a Krein
space (W , Q). Then we have two direct sum decompositions:

W = Ran Π1 ⊕ Ran Π2
= Ran Π1 ⊕ Ran Π2.



Let us sketch the proof. Set K := S2S1. Then K is positive
with respect to ( · | · )1 and ( · | · )2. Hence we can define c :=
Π1

1l−K
1l+KΠ1. Then the projections corresponding to the above direct

sum decompositions are

Λ12 =

1l c
0 0

 , Λ21 =

0 −c
0 1l

 ;

Λ12 =

0 0
c∗ 1l

 , Λ21 =


1l 0
−c∗ 0

 .

where we use the direct sum Ran Π1 ⊕ Ran Π1.



In practice, one does not start from a single pseudounitary space,
but rather from a pair of spaces, as we describe below.
Let (W−1

2
,W1

2
) be a pair of Hilbertizable spaces, withW1

2
densely

and continuously embedded in W−1
2
. Suppose that Q is a bounded

sesquilinear form
W−1

2
×W1

2
3 (v, w) 7→ (v |Qw) ∈ C,

Hermitian onW1
2
. Then by interpolation we obtain a Hermitian form

on W0, which we will denote by the same letter:
W0 ×W0 3 (v, w) 7→ (v |Qw) ∈ C.



Proposition. Suppose that B is an operator onW−1
2
with domain

containing W1
2
. We assume that B is a generator of a group on

W−1
2
, its part B̃ in W1

2
is a generator of a group on W1

2
, and

(
Bv | Qw

)
=

(
Bw|Qv

)
, v, w ∈ W1

2
.

Then e−itB, t ∈ R, is symplectic on (W0, Q).
An operator B is called a symplectic generator if the above condi-

tions hold. The above quadratic form is called the energy or Hamil-
tonian quadratic form.



Let B be a densely defined operator onW−1
2
with domain containig

W1
2
. We say that it is stable if there exists an admissible involution

S• such that B is self-adjoint for (·|·)−1
2,•

, KerB = {0} and

S• = sgn(B).
Note that every stable operator is a symplectic generator, and its

Hamiltonian form is positive:
(
v | BS•v) =

(
Bv | Qv

)
≥ 0.



Let R 3 t 7→ B(t) ∈ B(W1
2
,W−1

2
) satisfy the assumptions of the

theorem about almost unitary evolutions. Assume also that B(t) is a
symplectic generator on (W1

2
,W−1

2
, Q) for all t. Then the evolution

R(t, s) is symplectic.
Assume in addition that B(±∞) := s-lim

t→±∞
B(t) exist and are

stable. Then we set
S± := sgn

(
B(±∞)

)

which as we know are admissible involutions. Then we can introduce
the corresponding bisolutions E± and E±.
We also know that asymptotic complementarity is true for S+ and
S−, and hence the inverses E−+ and E−+ are well defined.



With this choice the bisolutions E± are denoted E(+)
± and called

the in/out positive frequency bisolutions, the bisolutions E± are
denoted E(−)

± and called the in/out negative frequency bisolutions
The inverses E−+ and E−+ are denoted EF, resp. EF, and called

the Feynman, resp. the anti-Feynman inverse.



Let us go back to the Klein-Gordon equation on a globally hyper-
bolic, asymptotically stationary manifold M

Kψ = 0,
where

K :=
(
|g|−

1
4(i∂µ + Aµ)|g|

1
2gµν(i∂ν + Aν)|g|−

1
4 + Y

)
ψ

is the Klein-Gordon operator.



It is possible and helpful to introduce a time variable t, so that
the spacetime is M = R × Σ. We can assume that there are no
time-space cross terms so that the metric can be written as

−g00(t, ~x) d2t + gij(t, ~x) dxi dxj.
By conformal rescaling we can assume that g00 = 1, so that, setting
V := A0, we have

K = −(i∂t + V )2 + L,

L = −|g|−
1
4(i∂i + Ai)|g|

1
2gij(i∂j + Aj)|g|−

1
4 + Y.



We rewrite the Klein-Gordon equation Ku = 0 as a 1st order
equation for the Cauchy data

∂t + iB(t)


u1(t)
u2(t)

 = 0,

u1(t)
u2(t)

 :=


u(t)
i∂tu(t)−W (t)u(t)



B(t) :=

W (t) 1l
L(t) W (t)

 ,

W (t) := V (t) + i
4
|g|(t)−1∂t|g|(t).



The space of Cauchy data is equipped with a charge form given by
the matrix 

0 1l
1l 0

 .

As described above, we define the symplectic dynamics R(t, s) gen-
erated by B(t). Note that if

E =

E11 E12
E21 E22



is a bisolution/inverse of ∂t+ iB(t), then E12 is a bisolution/inverse
of K.



We can now define both the classical propagators
GPJ := −iEPJ

12 , G∨ := −iE∨12, G∧ := −iE∧12
and the non-classical propagators

G(±) := E
(±)
12 , GF := −iEF

12, GF := −iEF
12.

They are inverses or bisolutions of K.



Thus on asymptotically stationary spacetimes we have two natu-
ral vacuum states and a single natural Feynman propagator. They
are not defined locally—they depend globally on the whole space-
time. However, their singularities, and even more, the semiclassical
expansion around the diagonal, are given by the local data.
Conjecture. On a large class of asymptotically stationary space-

times
(1) the Klein-Gordon operatorK is essentially self-adjoint onC∞c (M),
(2) in the sense 〈t〉−sL2(M)→ 〈t〉sL2(M),

s-lim
ε↘0

(K − iε)−1 = GF.



In a recent paper of A. Vasy this conjecture is proven for asymp-
totically Minkowskian spaces. It is true if the spatial dimension is
zero (when the Klein-Gordon operator reduces to the 1-dimensional
Schrödinger operator). It is also true on a large class of cosmological
spacetimes. Presumably, one can prove it on symmetric spacetimes.
Surprisingly, we have not found a trace of this question in the

older mathematical literature. Many respected mathematicians and
mathematical physicists react with disgust to this question, claiming
that it is completely non-physical.



However, in the physical literature there are many papers that take
the self-adjointness of the Klein-Gordon operator for granted. The
method of computing the Feynman propagator with external fields
and possibly on curved spacetimes based on the identity

lim
ε↘0

1
K − iε

= i
∞∫
0

e−itK dt (∗)

has even a name:
the Fock–Schwinger or Schwinger–DeWitt method.

Of course, without the self-adjointness of K, (∗) does not make
sense.


