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i) Physics Part:
@ Gauge Freedom

@ Canonical Quantization
© Maxwell Fields in different Gauges

i) Math Part:

© Equivalence of Observables in different gauges



Table of contents

@ Gauge Freedom and Canonical Quantization
@ Gauge Freedom
@ Canonical Quantization

e Different Gauges in QED
@ Gauge Freedom of Classical Electrodynamics
@ Coulomb gauge
@ Axial gauge

© (In-)Equivalence of gauges
@ Vanishing charge
@ Non-vanishing charge



Gauge Freedom and Canonical Quantization
g Q Gauge Freedom

Canonical Quantization

Singular Systems

o Configuration space M, Lagrange function L: TM — C
o Legendre trafo = Hamiltonian: H(q, p) = >_ vip; — L(q, p)
i

oL

pTM = TM, (V)= (0 pi= o)



Gauge Freedom and Canonical Quantization
g Q Gauge Freedom

Canonical Quantization

Singular Systems

o Configuration space M, Lagrange function L: TM — C
o Legendre trafo = Hamiltonian: H(q, p) = >_ vip; — L(q, p)
i

oL

pTM = TM, (V)= (0 pi= o)

Definition

Lagrangian L is called singular if p; is not a local isomorphism:

@ Problem: Hamiltonian depends linearly on some v?:

H(q", pi,v®) = A(q', pi) — v?¢a(d', pi)
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g Q Gauge Freedom

Canonical Quantization

Singular Systems

e eom. = {H,v} =0= ¢, L0
e With M,y := {2, dp}:

G502 Cou={on A} +vMu =0 (1)

@ Two cases:

Q {6, H} # 0,det(M) # 0 = all v are fixed by (1)
Q {¢p, H} =0, some v? are fixed by (1) depending on rk(M)

Definition

A constraint ¢, is called first class if {¢q, i} = 0 for every
constraint function ¢;, otherwise second class.




Gauge Freedom and Canonical Quantization
g Q Gauge Freedom

Canonical Quantization

Dirac Bracket

Case 1:
@ only 2" class constraints
o v fixed: v? = —(M~1){¢,, A} = 2F={F, H}p

Definition
Let F, G € C*°(M). Their Dirac bracket is:

{F,G}p :={F,G} — {F,p. (M ")**{¢p, G}p

© Mphys € Mowith {3, = {"}p

6 /22



Gauge Freedom and Canonical Quantization
g Q Gauge Freedom

Canonical Quantization

Gauge Freedom

Case 2:

@ 1° class constraints ¢, generate gauge
transformations:

orbit of gauge transformation

6cF = €*{F, da}

o {gauge orbits} = M s
@ Gauge fixing= intersecting each gauge
orbit once

gauge slice

& external constraints — no 15t class cons.

:f Dirac bracket

!Graphic from H.ltoyama, The Birth of String Theory, Progress in
Experimental and Theoretical Physics, 2016



Gauge Freedom and Canonical Quantization
g Q Gauge Freedom

Canonical Quantization

Canonical Quantization

@ Fix a Hilbert space H

o Any F € C*°(Mphys) mapped to a self adjoint operator F on
H such that:

1.~ A



Gauge Freedom and Canonical Quantization
g Q Gauge Freedom

Canonical Quantization

Canonical Quantization

@ Fix a Hilbert space H

o Any F € C*°(Mphys) mapped to a self adjoint operator F on
H such that:

1.~ A

Problem: {-, -} not compatible with constraints
= Solution :

1 o &
{FaG}D%E[FvG]
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Strategy of Canonical Quantization

@ h: one-particle space, Bosonic Fock space:

rs(h) = P Es(h™")

n>0

o a(f),al(f), f € b: the usual annihilation and creation
operators on [



Gauge Freedom and Canonical Quantization ~ _
Gauge edom

Canonical Quantization

Strategy of Canonical Quantization

@ h: one-particle space, Bosonic Fock space:

r<(h) = P E(h°")

n>0

a(f),a’(f), f € b: the usual annihilation and creation
operators on [

Choose H = I'4(h) with h = L?(R3) ® C3

Find a classical representation of Dirac bracket in terms of
modes 3,, 5 satisfying {3n(k), 3n(k')}p = —i6,md® (k — k')

Quantization: 55,“ N ag)



Gauge Freedom of Classical Electrodynamics
Different Gauges in QED Coulomb gauge
Axial gauge

Covariant Formulation of Maxwell Equations

o Vector field A € Q'(Mink,) and field strength tensor
Fu = 0,A, — 0,A,

e Current j € S(R3) ®C* with charge Q = [g; d°x jo(x) = jo(0)
o Lagrange density:

L= FMF,, —j,A"

oL
=Ty

= 5goan ~ Fro=Eu

= mg = Fgo = 0 — L is singular

10/22



Gauge Freedom of Classical Electrodynamics
Different Gauges in QED

Gauge Freedom

@ Two first class constraints
7o = Foo = 0 V-r+jo=0 (Gauss Iaw)
= two generators of gauge transformations:

Ao — Ag+ €&
A — A+ 0ix

= Well knwon U(1) gauge freedom
= 2 gauge conditions needed

11/22
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Axial gauge

The Coulomb gauge

@ Choose gauge conditions:
(i) V-A=0, (i) AAy+Jjo=0

= Dirac bracket:

(A0 w0 = (85— 2 ) 89—




Different Gauges in QED

The Coulomb gauge

@ Choose gauge conditions:
(i) V-A=0, (i) AAy+Jjo=0

= Dirac bracket:

(A 7)) = (6 -

Let f € S(R3) ® R3, then:
o mC(f) = a((%)? PT(f)HaT(( )2 Pr(F)) + (k- f.Jo)
o BE(f) = a((2w)~ 2cur/(f))+a*((2w)%cur/ )

with Pt projection to ht :={g € h; k- g =0}



Gauge dom of Classical Electrodynamics
Different Gauges in QED Coulomb gauge
Axial gauge

The Axial gauge

@ Choose gauge conditions
(i) e-A=0 (i) e-(m—VAy) =0

= Dirac bracket:
e-@,-
(A0 w0 = (85— L) 0(x )

i0;
Problem: & : S(R®) 4 L2(R3)

13 /22



Gauge Freedom of Classical Electrodynamics
Different Gauges in QED Coulomb gauge
Axial gauge

Smearing of the Axial gauge

@ Extend phase space to have n copies of A — extends Gauge
freedom to U(1) x --- x U(1)

o Axial gauge fixing for each A; with gauge vector ¢; € R3

@ Dirac bracket:

(A7)} o = [6,-,- - (Z v) a,-] 5 (x ~ y)

i=1
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Gauge dom of Classical Electrodynamics
Different Gauges in QED Coulomb gauge
Axial gauge

Smearing of the Axial gauge

@ Extend phase space to have n copies of A — extends Gauge
freedom to U(1) x --- x U(1)

o Axial gauge fixing for each A; with gauge vector ¢; € R3

@ Dirac bracket:
(A, (1) }o = !6,-,- - (Z v) a,-] 53 (x— y)

i=1

@ Interpretation as Riemann sum:

. n ekJ ej
lim — =PV — dQ2
n'j;on;e.v /52 (e) o ge(e)

for g € C1(S?) and [, dQ(e) g(e) =1

14 /22



Gauge Freedom of Classical Electrodynamics
Different Gauges in QED Coulomb gauge
Axial gauge

Observables

Let f € S(R3) ® R3, then:
o ©(f) = a(iw? Prf) + a (iw2 Prf) + (f, [ Zc8(e)o)
e B¥(f) = a((2w)_§cur/(f)) + aT((2w)§cur/(f))
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Gauge Freedom of Classical Electrodynamics
Different Gauges in QED Coulomb gauge
Axial gauge

Observables

Let f € S(R3) ® R3, then:
o m(f) = a(iw? Prf) + af(iw? Prf) + (F, (, [s» Zg(e)o)

—

e B¥(f) = a((2w)_§cur/(f)) + aT((2w)§cur/(f))
Note:

Q PV — [o, dQ(e) Lg(e) : S(R?) — L3(R3)

Q@ B> = BC

© Difference of 7€ and 72 only in transversal part:

w2 (1) = n () + (e, [ T gl

= Inequivalence can only arise from transversal fields
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Vanishing c

. Non-vanish
(In-)Equivalence of gauges

Weyl operators on transversal Fock space

e Transversal Fock space: 't :=T¢(h7) with

hr = {f e 2R} ®@C3k -f=0}
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Vanishing ¢

. Non-vanishi
(In-)Equivalence of gauges

Weyl operators on transversal Fock space

e Transversal Fock space: 't :=T¢(h7) with

hr = {f € L]((R®)®C3% k-f =0}

(s(Re() + ! (Re() ) and

1
V2
7(f) := % <a(im)) + aT(iIm(f))> are self adjoint on I
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Vanishing ¢

. Non-vanishi
(In-)Equivalence of gauges

Weyl operators on transversal Fock space

e Transversal Fock space: 't :=T¢(h7) with

hr = {f e 2R} ®@C3k -f=0}

—
—

e o(f):= % <a(Re(f))) + aT(Re(f))> and

7(f) = L <a(im)) + aHiE(?))) are self adjoint on I

V2
o The Weyl operators e’®(f) /(&) are unitary and satisfy

/() oim(8) — o=5(f.8) oi(d(F)+m(g))

16 /22



Vanishing c

. Non-vanish
(In-)Equivalence of gauges

Algebra of observables

@ Weyl operators of the canonical momenta:
eiwg(if) _ in(if)
o mF(if) _ i{[s2 dQ(e) P g(e)jo.F f) eim(if)
@ Test function space L C h7 with Pt projection on h:
L:=w 2curl(S(R3) @ R3) + iw2 Pr(S(R3) @ R3)

o $L:={W(f),f € L}" is the algebra of observables
@ The set {W(f),f € L} is irreducible in T

17 /22



Vanishing charge

. Non-vanishing charge
(In-)Equivalence of gauges = =

Gauge Equivalence for current with vanishing charge
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Vanishing charge

. Non-vanishing charge
(In-)Equivalence of gauges = =

Gauge Equivalence for current with vanishing charge

'™ = ™ iff j5(0) = 0

Strategy for " <=":

9w 2 [ de) T g(e)i) %) is a uni i
o /w2 [52de)=g(e)) . — Ug(jo) is a unitary on I iff
Jo(0) = 0 due to:

1 P ™ -
ot [ a0 T gelh < hr < 0 ~0

18 /22



Vanishing charge

. Non-vanishing charge
(In-)Equivalence of gauges = =

Gauge Equivalence for current with vanishing charge

'™ = ™ iff j5(0) = 0

Strategy for "

0 e?lw 2 f52 d0(e) L) .~ (]O) is a unitary on I iff
Jjo(0) = 0 due to:

ydmaiﬁéwmenr@mm:o

N[

W

o Ug(io)W(if) UL (jo) = &"fs2 #0()=
= Equivalence of the gauges If_]o(O) =0:

Ugio)e™ Uf(jo) = €™

(e)Jo> W (if)

18 /22
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Strategy for "=

Defintion

Let L’ be the algebraic dual of L and F € L’. An automorphism of
W of the form

E(W(g)) = eFEW(g)

is called coherent automorphism.

e ™ and €™ are linked via the coherent automorphism with
F(F) = Im ({52 d2e) g (), wi 1))

19/22



Vanishing charge
Non-vanishing charge

(In-)Equivalence of gauges

'™ = ™ iff j5(0) = 0

Strategy for "=

Defintion

Let L’ be the algebraic dual of L and F € L’. An automorphism of
W of the form

E(W(g)) = eFEW(g)

is called coherent automorphism.

e ™ and €™ are linked via the coherent automorphism with
F(F) = Im ({52 d2e) g (), wi 1))
e Equivalent Problem: v =1 :>j0(0)

19 /22



Vanishing charge

(In-)Equivalence of gauges Llonglaiheteliaee

If v¢ 2 T, then: jo(0) =0
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Vanishing charge

Non-vanishing charge

In-)Equivalence of gauges
q

If v 22 T, then: jo(0) =0

Strategy:
e Construct a central sequence W(if,) C W:

[A, Jim W(if,)] = 0

for all A € W such that ||f\|| = ||f]|
e Irreducibility: = W(ify) = cl, ce C
o [[All=|fll = W(if\) = wo(W(if))I weakly
o F(A) — jo(0)ar with ar € R
= e(W(if)) = eB@arwo(W(if))T
@ We can choose f such that ar #£0

20 /22



Conclusion

@ Discussed Canonical Quantization for system with Gauge

Freedom
@ Defined Maxwell fields on I's that satisfy Coulomb gauge
@ Regularized Axial gauge by Smearing
@ Main Result:
Axial gauge = Coulombg gauge <:>_j/'(;(0) =0
Outlook:

o Classify Axial gauges in terms of g that are unitarily equivalent



Thank you for your attention!
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