The problem of equivalence of different gauges in external current QED

Benedikt Wegener

Foundations and Constructive Aspects of QFT Bergische Universität Wuppertal

June 22, 2018

Motivation and Strategy

Motivation:

 In classical ED: change of gauge has no influence on the experimental results.

In QED this issue is more controversial.

Motivation and Strategy

Motivation:

 In classical ED: change of gauge has no influence on the experimental results.

In QED this issue is more controversial.

Strategy:

- i) Physics Part:
 - Gauge Freedom
 - 2 Canonical Quantization
 - Maxwell Fields in different Gauges
- ii) Math Part:
 - Equivalence of Observables in different gauges

Table of contents

- Gauge Freedom and Canonical Quantization
 - Gauge Freedom
 - Canonical Quantization
- Different Gauges in QED
 - Gauge Freedom of Classical Electrodynamics
 - Coulomb gauge
 - Axial gauge
- (In-)Equivalence of gauges
 - Vanishing charge
 - Non-vanishing charge

- Configuration space \mathcal{M} , Lagrange function $L: T\mathcal{M} \to \mathbb{C}$
- Legendre trafo \Rightarrow Hamiltonian: $H(q,p) = \sum_i v^i p_i L(q,p)$

$$ho_L: T\mathcal{M} o T^*\mathcal{M}, \qquad (q^i, v^i) \mapsto (q^i, p_i := \frac{\partial L}{\partial v^i})$$

- Configuration space \mathcal{M} , Lagrange function $L: T\mathcal{M} \to \mathbb{C}$
- Legendre trafo \Rightarrow Hamiltonian: $H(q,p) = \sum_i v^i p_i L(q,p)$

$$ho_L: T\mathcal{M}
ightarrow T^*\mathcal{M}, \qquad (q^i, v^i) \mapsto (q^i, p_i := rac{\partial L}{\partial v^i})$$

Definition

Lagrangian L is called singular if ρ_L is not a local isomorphism:

$$\det(\frac{\partial^2 L}{\partial v^i \partial v^j}) = 0$$

• **Problem**: Hamiltonian depends linearly on some v^a :

$$H(q^i, p_i, v^a) = \tilde{H}(q^i, p_i) - v^a \phi_a(q^i, p_i)$$

- e.o.m. $\Rightarrow \{H, v^a\} = 0 \Rightarrow \phi_a \stackrel{!}{=} 0$
- With $M_{ab} := \{ \phi_a, \phi_b \}$:

$$\phi_b \stackrel{!}{=} 0 \Rightarrow \frac{d}{dt}\phi_b = \{\phi_b, \tilde{H}\} + v^a M_{ab} \stackrel{!}{=} 0 \tag{1}$$

- e.o.m. $\Rightarrow \{H, v^a\} = 0 \Rightarrow \phi_a \stackrel{!}{=} 0$
- With $M_{ab} := \{ \phi_a, \phi_b \}$:

$$\phi_b \stackrel{!}{=} 0 \Rightarrow \frac{d}{dt} \phi_b = \{\phi_b, \tilde{H}\} + v^a M_{ab} \stackrel{!}{=} 0 \tag{1}$$

- Two cases:
 - $\{\phi_b, \tilde{H}\} \neq 0, det(M) \neq 0 \Rightarrow \text{all } v^a \text{ are fixed by (1)}$
 - ② $\{\phi_b, \tilde{H}\} = 0$, some v^a are fixed by (1) depending on rk(M)

- e.o.m. $\Rightarrow \{H, v^a\} = 0 \Rightarrow \phi_a \stackrel{!}{=} 0$
- With $M_{ab} := \{ \phi_a, \phi_b \}$:

$$\phi_b \stackrel{!}{=} 0 \Rightarrow \frac{d}{dt} \phi_b = \{\phi_b, \tilde{H}\} + v^a M_{ab} \stackrel{!}{=} 0 \tag{1}$$

- Two cases:
 - $\{\phi_b, \tilde{H}\} \neq 0, det(M) \neq 0 \Rightarrow \text{all } v^a \text{ are fixed by } (1)$
 - ② $\{\phi_b, \tilde{H}\} = 0$, some v^a are fixed by (1) depending on rk(M)

Definition

A constraint ϕ_{α} is called *first* class if $\{\phi_{\alpha}, \phi_i\} = 0$ for every constraint function ϕ_i , otherwise *second* class.

Dirac Bracket

Case 1:

- only 2nd class constraints
- v^a fixed: $v^a = -(M^{-1})^{ab}\{\phi_b, \tilde{H}\} \Rightarrow \frac{d}{dt}F = \{F, \tilde{H}\}_D$

Definition

Let $F, G \in C^{\infty}(\mathcal{M})$. Their *Dirac bracket* is:

$$\{F,G\}_D := \{F,G\} - \{F,\phi_a\}(M^{-1})^{ab}\{\phi_b,G\}_D$$

•
$$\mathcal{M}_{phys} \subset \mathcal{M}$$
 with $\{\cdot,\cdot\}|_{\mathcal{M}_{phys}} = \{\cdot,\cdot\}_D$

Gauge Freedom

Case 2:

• $1^{\rm st}$ class constraints ϕ_{α} generate gauge transformations:

$$\delta_{\epsilon} F = \epsilon^{\alpha} \{ F, \phi_{\alpha} \}$$

- {gauge orbits} $\cong \mathcal{M}_{phys}$
- Gauge fixing= intersecting each gauge orbit once
- \Leftrightarrow external constraints \to no 1st class cons.
- ⇒ Dirac bracket

orbit of gauge transformation

¹Graphic from H.Itoyama, *The Birth of String Theory*, Progress in Experimental and Theoretical Physics, 2016

Canonical Quantization

- Fix a Hilbert space ℍ
- Any $F \in C^{\infty}(\mathcal{M}_{phys})$ mapped to a self adjoint operator \hat{F} on \mathbb{H} such that:

$$\{F,G\} \rightarrow \frac{1}{i\hbar}[\hat{F},\hat{G}]$$

Canonical Quantization

- Fix a Hilbert space ℍ
- Any $F \in C^{\infty}(\mathcal{M}_{phys})$ mapped to a self adjoint operator \hat{F} on \mathbb{H} such that:

$$\{F,G\} \rightarrow \frac{1}{i\hbar}[\hat{F},\hat{G}]$$

Problem: $\{\cdot, \cdot\}$ not compatible with constraints

 \Rightarrow Solution :

$$\{F,G\}_D \rightarrow \frac{1}{i\hbar}[\hat{F},\hat{G}]$$

Strategy of Canonical Quantization

• h: one-particle space, Bosonic Fock space:

$$\Gamma_s(\mathfrak{h}) = \bigoplus_{n \geq 0} E_s(\mathfrak{h}^{\otimes n})$$

• $a(f), a^{\dagger}(f), f \in \mathfrak{h}$: the usual annihilation and creation operators on Γ_s

Strategy of Canonical Quantization

• h: one-particle space, Bosonic Fock space:

$$\Gamma_s(\mathfrak{h}) = \bigoplus_{n \geq 0} E_s(\mathfrak{h}^{\otimes n})$$

- $a(f), a^{\dagger}(f), f \in \mathfrak{h}$: the usual annihilation and creation operators on Γ_s
- Choose $\mathbb{H} = \Gamma_s(\mathfrak{h})$ with $\mathfrak{h} = L^2(\mathbb{R}^3) \otimes \mathbb{C}^3$
- Find a classical representation of Dirac bracket in terms of modes \tilde{a}_n , \tilde{a}_n^{\dagger} satisfying $\{\tilde{a}_n(k), \tilde{a}_m^{\dagger}(k')\}_D = -i\delta_{nm}\delta^{(3)}(k-k')$
- Quantization: $\tilde{a}_n^{(\dagger)} \rightarrow a_n^{(\dagger)}$

Covariant Formulation of Maxwell Equations

- Vector field $A \in \Omega^1(Mink_4)$ and field strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$
- Current $j\in \mathcal{S}(\mathbb{R}^3)\otimes \mathcal{C}^4$ with charge $Q=\int_{\mathbb{R}^3}d^3x\ j_0(x)=\widehat{j_0}(0)$
- Lagrange density:

$$\mathcal{L} = F^{\mu\nu} F_{\mu\nu} - j_{\mu} A^{\mu}$$
$$\Rightarrow \pi_{\mu} := \frac{\delta \mathcal{L}}{\delta \partial^{0} A^{\mu}} = F_{\mu 0} = E_{\mu}$$

$$\Rightarrow \pi_0 = F_{00} = 0 \rightarrow \mathcal{L}$$
 is singular

Gauge Freedom

Two first class constraints

$$\pi_0 = F_{00} \approx 0$$
 $\nabla \cdot \pi + j_0 \approx 0$ (Gauss law)

 \Rightarrow two generators of gauge transformations:

$$A_0 \to A_0 + \xi$$

 $A_i \to A_i + \partial_i \chi$

- \Rightarrow Well knwon U(1) gauge freedom
- \Rightarrow 2 gauge conditions needed

The Coulomb gauge

• Choose gauge conditions:

(i)
$$\nabla \cdot A \approx 0$$
, (ii) $\Delta A_0 + j_0 \approx 0$

⇒ Dirac bracket:

$$\{A_i(x), \pi_j(y)\}_D = \left(\delta_{ij} - \frac{\partial_i \partial_j}{\Delta}\right) \delta^{(3)}(x - y)$$

The Coulomb gauge

Choose gauge conditions:

(i)
$$\nabla \cdot A \approx 0$$
, (ii) $\Delta A_0 + j_0 \approx 0$

⇒ Dirac bracket:

$$\{A_i(x), \pi_j(y)\}_D = \left(\delta_{ij} - \frac{\partial_i \partial_j}{\Delta}\right) \delta^{(3)}(x - y)$$

Let $f \in \mathcal{S}(\mathbb{R}^3) \otimes \mathbb{R}^3$, then:

•
$$\pi^{C}(f) = a((\frac{\omega}{2})^{\frac{1}{2}}P_{T}(\hat{f})) + a^{\dagger}((\frac{\omega}{2})^{\frac{1}{2}}P_{T}(\hat{f})) + \langle k \cdot \hat{f}, \hat{j_0} \rangle$$

•
$$B^{C}(f) = a((2\omega)^{-\frac{1}{2}}\widehat{curl(f)}) + a^{\dagger}((2\omega)^{\frac{1}{2}}\widehat{curl(f)})$$

with P_T : projection to $\mathfrak{h}_T := \{g \in \mathfrak{h}; k \cdot \hat{g} = 0\}$

The Axial gauge

Choose gauge conditions

(i)
$$e \cdot A \approx 0$$
 (ii) $e \cdot (\pi - \nabla A_0) \approx 0$

⇒ Dirac bracket:

$$\{A_i(x), \pi_j(y)\}_D = \left(\delta_{ij} - \frac{e_j \partial_i}{e \cdot \nabla}\right) \delta^{(3)}(x - y)$$

Problem: $\frac{e_i \partial_j}{e \cdot \nabla} : \mathcal{S}(\mathbb{R}^3) \not\to L^2(\mathbb{R}^3)$

Smearing of the Axial gauge

- Extend phase space to have n copies of $A \to \text{extends}$ Gauge freedom to $U(1) \times \cdots \times U(1)$
- Axial gauge fixing for each A_i with gauge vector $e_i \in \mathbb{R}^3$
- Dirac bracket:

$$\{A_i(x), \pi_j(y)\}_D = \left[\delta_{ij} - \frac{1}{n} \left(\sum_{i=1}^n \frac{e_{i,j}}{e \cdot \nabla}\right) \partial_i\right] \delta^{(3)}(x-y)$$

Smearing of the Axial gauge

- Extend phase space to have n copies of $A \to \text{extends}$ Gauge freedom to $U(1) \times \cdots \times U(1)$
- Axial gauge fixing for each A_i with gauge vector $e_i \in \mathbb{R}^3$
- Dirac bracket:

$$\{A_i(x), \pi_j(y)\}_D = \left[\delta_{ij} - \frac{1}{n} \left(\sum_{i=1}^n \frac{e_{i,j}}{e \cdot \nabla}\right) \partial_i\right] \delta^{(3)}(x-y)$$

• Interpretation as Riemann sum:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}\frac{e_{k,j}}{e\cdot\nabla}=PV-\int_{S^2}d\Omega(e)\;\frac{e_j}{e\cdot\nabla}g(e)$$

for
$$g \in \mathit{C}^1(\mathit{S}^2)$$
 and $\int_{\mathit{S}^2} d\Omega(e) \; g(e) = 1$

Let $f \in \mathcal{S}(\mathbb{R}^3) \otimes \mathbb{R}^3$, then:

•
$$\pi^{ax}(f) = a(i\omega^{\frac{1}{2}}P_T\hat{f}) + a^{\dagger}(i\omega^{\frac{1}{2}}P_T\hat{f}) + \langle \hat{f}, \int_{S^2} \frac{e}{e\cdot k}g(e)\hat{j_0}\rangle$$

•
$$B^{ax}(f) = a((2\omega)^{-\frac{1}{2}}\widehat{curl(f)}) + a^{\dagger}((2\omega)^{\frac{1}{2}}\widehat{curl(f)})$$

Let $f \in \mathcal{S}(\mathbb{R}^3) \otimes \mathbb{R}^3$, then:

•
$$\pi^{ax}(f) = a(i\omega^{\frac{1}{2}}P_T\hat{f}) + a^{\dagger}(i\omega^{\frac{1}{2}}P_T\hat{f}) + \langle \hat{f}, \int_{S^2} \frac{e}{e \cdot k}g(e)\hat{j_0}\rangle$$

•
$$B^{ax}(f) = a((2\omega)^{-\frac{1}{2}}\widehat{curl(f)}) + a^{\dagger}((2\omega)^{\frac{1}{2}}\widehat{curl(f)})$$

Note:

Let $f \in \mathcal{S}(\mathbb{R}^3) \otimes \mathbb{R}^3$, then:

•
$$\pi^{ax}(f) = a(i\omega^{\frac{1}{2}}P_T\hat{f}) + a^{\dagger}(i\omega^{\frac{1}{2}}P_T\hat{f}) + \langle \hat{f}, \int_{S^2} \frac{e}{e\cdot k}g(e)\hat{j_0}\rangle$$

•
$$B^{ax}(f) = a((2\omega)^{-\frac{1}{2}}\widehat{curl(f)}) + a^{\dagger}((2\omega)^{\frac{1}{2}}\widehat{curl(f)})$$

Note:

$$B^{ax} = B^C$$

3 Difference of π^C and π^{ax} only in transversal part:

$$\pi^{ax}(f) = \pi^{C}(f) + \langle P_{T}(\hat{f}), \int_{S^{2}} \frac{P_{T}(e)}{e \cdot k} g(e) \hat{j_{0}} \rangle$$

Let $f \in \mathcal{S}(\mathbb{R}^3) \otimes \mathbb{R}^3$, then:

•
$$\pi^{ax}(f) = a(i\omega^{\frac{1}{2}}P_T\hat{f}) + a^{\dagger}(i\omega^{\frac{1}{2}}P_T\hat{f}) + \langle \hat{f}, \int_{S^2} \frac{e}{e\cdot k}g(e)\hat{j_0}\rangle$$

•
$$B^{ax}(f) = a((2\omega)^{-\frac{1}{2}}\widehat{curl(f)}) + a^{\dagger}((2\omega)^{\frac{1}{2}}\widehat{curl(f)})$$

Note:

$$B^{ax} = B^C$$

3 Difference of π^C and π^{ax} only in transversal part:

$$\pi^{\mathsf{ax}}(f) = \pi^{\mathsf{C}}(f) + \langle P_{\mathsf{T}}(\hat{f}), \int_{S^2} \frac{P_{\mathsf{T}}(e)}{e \cdot k} g(e) \widehat{j_0} \rangle$$

⇒ Inequivalence can only arise from transversal fields

Weyl operators on transversal Fock space

• Transversal Fock space: $\Gamma_T := \Gamma_s(\mathfrak{h}_T)$ with

$$\mathfrak{h}_{\mathcal{T}}:=\{f\in L^2(\mathbb{R}^3)\otimes\mathbb{C}^3; k\cdot\hat{f}=0\}$$

Weyl operators on transversal Fock space

• Transversal Fock space: $\Gamma_T := \Gamma_s(\mathfrak{h}_T)$ with

$$\mathfrak{h}_{\mathcal{T}}:=\{f\in L^2(\mathbb{R}^3)\otimes\mathbb{C}^3; k\cdot\hat{f}=0\}$$

•
$$\phi(f) := \frac{1}{\sqrt{2}} \left(\widehat{a(Re(f))} \right) + a^{\dagger} (\widehat{Re(f)}) \right)$$
 and
$$\pi(f) := \frac{1}{\sqrt{2}} \left(\widehat{a(iIm(f))} \right) + a^{\dagger} (\widehat{iIm(f)}) \right) \text{ are self adjoint on } \Gamma_T^{fin}$$

Weyl operators on transversal Fock space

• Transversal Fock space: $\Gamma_T := \Gamma_s(\mathfrak{h}_T)$ with

$$\mathfrak{h}_{\mathcal{T}}:=\{f\in L^2(\mathbb{R}^3)\otimes\mathbb{C}^3; k\cdot\hat{f}=0\}$$

- $\phi(f) := \frac{1}{\sqrt{2}} \left(a(\widehat{Re(f)}) + a^{\dagger}(\widehat{Re(f)}) \right)$ and $\pi(f) := \frac{1}{\sqrt{2}} \left(a(\widehat{iIm(f)}) + a^{\dagger}(\widehat{iIm(f)}) \right)$ are self adjoint on Γ_T^{fin}
- The Weyl operators $e^{i\phi(f)}$, $e^{i\pi(g)}$ are unitary and satisfy

$$e^{i\phi(f)}e^{i\pi(g)} = e^{-\frac{i}{2}\langle f,g\rangle}e^{i(\phi(f)+\pi(g))}$$

Algebra of observables

Weyl operators of the canonical momenta:

$$\begin{split} e^{i\pi_T^C(if)} &= e^{i\pi(if)} \\ e^{i\pi_T^{ax}(if)} &= e^{i\langle \int_{\mathbb{S}^2} d\Omega(e) \frac{P_T(e)}{e \cdot k} g(e) \hat{j_0}, \hat{f} \rangle} e^{i\pi(if)} \end{split}$$

• Test function space $L \subset \mathfrak{h}_T$ with P_T projection on \mathfrak{h}_T :

$$L:=\omega^{-\frac{1}{2}} curl(\mathcal{S}(\mathbb{R}^3)\otimes \mathbb{R}^3)+i\omega^{\frac{1}{2}} P_{\mathcal{T}}(\mathcal{S}(\mathbb{R}^3)\otimes \mathbb{R}^3)$$

- $\mathfrak{U} := \{W(f), f \in L\}''$ is the algebra of observables
- The set $\{W(f), f \in L\}$ is irreducible in Γ_T

Gauge Equivalence for current with vanishing charge

Theorem

$$e^{i\pi^C}\cong e^{i\pi^{ax}}$$
 iff $\widehat{j_0}(0)=0$

Gauge Equivalence for current with vanishing charge

Theorem

$$e^{i\pi^C}\cong e^{i\pi^{ax}}$$
 iff $\widehat{j_0}(0)=0$

Strategy for " \Leftarrow ":

• $e^{i\phi(\omega^{-\frac{1}{2}}\int_{S^2}d\Omega(e)\frac{P_T(e)}{e\cdot k}g(e)\widehat{j_0})}:=U_g(\widehat{j_0})$ is a unitary on Γ_T iff $\widehat{j_0}(0)=0$ due to:

$$\omega^{-\frac{1}{2}} \int_{S^2} d\Omega(e) \frac{P_T(e)}{e \cdot k} g(e) \widehat{j_0} \in \mathfrak{h}_T \Leftrightarrow \widehat{j_0}(0) = 0$$

Gauge Equivalence for current with vanishing charge

Theorem

$$e^{i\pi^C}\cong e^{i\pi^{ax}}$$
 iff $\widehat{j_0}(0)=0$

Strategy for " \Leftarrow ":

• $e^{i\phi(\omega^{-\frac{1}{2}}\int_{S^2}d\Omega(e)\frac{P_T(e)}{e\cdot k}g(e)\widehat{j_0})}:=U_g(\widehat{j_0})$ is a unitary on Γ_T iff $\widehat{j_0}(0)=0$ due to:

$$\omega^{-\frac{1}{2}} \int_{S^2} d\Omega(e) \frac{P_T(e)}{e \cdot k} g(e) \widehat{j_0} \in \mathfrak{h}_T \Leftrightarrow \widehat{j_0}(0) = 0$$

- $U_g(\widehat{j_0})W(if)U_g^{\dagger}(\widehat{j_0}) = e^{i\langle \widehat{f}, \int_{S^2} d\Omega(e) \frac{P_T(e)}{e \cdot k} g(e) \widehat{j_0} \rangle}W(if)$
- \Rightarrow Equivalence of the gauges if $\widehat{j_0}(0) = 0$:

$$U_g(\widehat{j_0})e^{i\pi^c}U_g^{\dagger}(\widehat{j_0})=e^{i\pi^{ax}}$$

$$e^{i\pi^C}\cong e^{i\pi^{ax}}$$
 iff $\widehat{j_0}(0)=0$

Strategy for " \Rightarrow ":

$$e^{i\pi^C}\cong e^{i\pi^{ax}}$$
 iff $\widehat{j_0}(0)=0$

Strategy for " \Rightarrow ":

Defintion

Let L' be the algebraic dual of L and $F \in L'$. An automorphism of $\mathcal W$ of the form

$$\gamma_F(W(g)) = e^{iF(g)}W(g)$$

is called coherent automorphism.

• $e^{i\pi^c}$ and $e^{i\pi^{ax}}$ are linked via the coherent automorphism with $F(f) = Im\left(\langle \int_{S^2} d\Omega(e) \frac{P_T(e)}{e \cdot k} g(e) \hat{j_0}, \omega^{\frac{1}{2}} f \rangle\right)$

$$e^{i\pi^C}\cong e^{i\pi^{ax}}$$
 iff $\widehat{j_0}(0)=0$

Strategy for " \Rightarrow ":

Defintion

Let L' be the algebraic dual of L and $F \in L'$. An automorphism of $\mathcal W$ of the form

$$\gamma_F(W(g)) = e^{iF(g)}W(g)$$

is called coherent automorphism.

- $e^{i\pi^c}$ and $e^{i\pi^{ax}}$ are linked via the coherent automorphism with $F(f) = Im\left(\langle \int_{S^2} d\Omega(e) \frac{P_T(e)}{e \cdot k} g(e) \hat{j_0}, \omega^{\frac{1}{2}} f \rangle\right)$
- Equivalent Problem: $\gamma_F \cong \mathbb{I} \Rightarrow \widehat{j_0}(0)$

If
$$\gamma_F\cong \mathbb{I}$$
, then: $\widehat{j_0}(0)=0$

If
$$\gamma_F\cong \mathbb{I}$$
, then: $\widehat{j_0}(0)=0$

Strategy:

• Construct a central sequence $W(if_{\lambda}) \subset \mathcal{W}$:

$$[A, \lim_{\lambda \to \infty} W(if_{\lambda})] = 0$$

for all $A \in \mathcal{W}$ such that $||f_{\lambda}|| = ||f||$

- Irreducibility: $\Rightarrow W(if_{\lambda}) \rightarrow c\mathbb{I}, \ c \in \mathbb{C}$
- $\|f_{\lambda}\| = \|f\| \Rightarrow W(if_{\lambda}) \rightarrow \omega_0(W(if))\mathbb{I}$ weakly
- $F(f_{\lambda}) \rightarrow \widehat{j_0}(0)a_f$ with $a_f \in \mathbb{R}$
- $\Rightarrow \gamma_F(W(if_{\lambda})) \rightarrow e^{i\widehat{j_0}(0)a_f}\omega_0(W(if))\mathbb{I}$
 - We can choose f such that $a_f \neq 0$

Conclusion

- Discussed Canonical Quantization for system with Gauge Freedom
- Defined Maxwell fields on Γ_s that satisfy Coulomb gauge
- Regularized Axial gauge by Smearing
- Main Result:

Axial gauge
$$\cong$$
 Coulombg gauge $\Leftrightarrow \widehat{j_0}(0) = 0$

Outlook:

Classify Axial gauges in terms of g that are unitarily equivalent

Thank you for your attention!