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Operator-algebraic approaches to lattice-gauge theory
Hamiltonian formulation [Kogut, Susskind; 1975]

Operator-algebraic formulations

@ Mathematical framework
— fixed finite lattices [Kijowski, Rudolph; 2002]
— fixed infinite lattice [Grundling, Rudolph; 2013]
— inductive limit over finite lattices [Arici, Stienstra, van Suijlekom; 2017]
(loop quantum gravity approach, e.g. [Thiemann, 2002],[AS, Thiemann, 2016])
o Common aspect
— Replace the classical edge phase space T*G by the C*-algebra C(G) x G (G-CCR).

Problem

C(G) x G is not unital. This complicates constructions.

Observation

Equivariant Duflo-Weyl quantization is related to C(G) x G as well. It requires a unital
extension to be well-defined.
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CFTs and unitary representations of Thompson's groups
Reconstruction of CFTs from subfactors [Jones; 2014]

1+1 dimensional chiral CFTs

o {A(I)};cst (conformal net of type Il factors)

o A(I) C B(I), extensions give subfactors
— Characterized by algebraic data (planar algebras).

Main idea [Jones; 2014]
Use planar-algebra data to reconstruct CFTs from subfactors.

— Define a functor from binary planar forest to Hilbert spaces (tensor networks).

Y +— (Hi— Ho
P ( )
basic forest “spin doubling”

— Gives discrete-CFT models (Thompson group symmetry).

Observation
These discrete-CFT models fit into the same framework as lattice-gauge theories defined
by equivariant Duflo-Weyl quantization.
Functor «— Inductive limit over lattices/graphs
v
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Construction for a lattice with a single edge
The classical phase space of time-zero gauge fields

Basic ingredients

@ The gauge-field phase space I" will be modeled on T*G (cf. [Creutz, 1983]).
— T*G = G x g with the canonical symplectic structure.

The canonical Poisson structure

The following Poisson structure is induced on C*°(T™G):
{O’f, Uf’}T*G — 0,
{ox, 0} r+c = oRry ps
{ox,0v}rc = —0o1x,v]s

for o¢(0,9) = f(g), f € C(G), and ox(0,g) = (X), X € g (momentum map of the
Hamiltonian G-action).

Gauge transformations

The gauge transformations are associated with the left and right Hamiltonian G-actions
on T*G. But, there are various forms of gauge groups available depending on the
“boundary topology” of the edge (open/closed, finite/infinite, etc.).

v
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Construction for a lattice with a single edge
The C*-algebra of time-zero gauge fields

Basic ingredients

@ The gauge-field C*-algebra 2l will be based on C(G) x G C C(G) Ve CX(G)
(cf. [Creutz, 1983]).

— The crossed product structure is to be thought of as the “quantum” Poisson structure.

o This is motivated by the following theorem:

Theorem - Duflo-Weyl quantization (generalization of [Landsman; 1993]))

QPY - Cfu () ©C=(G) C C=(I"G) — K(L*(@)) = C(G) x @

is a non-degenerate, strict deformation quantization on (0, 1] w.r.t. to the canonical
Poisson structure on T*G. Furthermore, the G-CCR are satisfied:

QY ({or,0p}rc) = [QFW (04),Q2"Y (o4/)] = 0,
QY ({ox, o5 r+a) = L[QPY (0x),Q7" (04)] = Rx f,
2 LHQREY (0x),Q2" (ov)] = ieRx v

The Weyl form of the G-CCR corresponds to the crossed product relations.

{ox,0v}r*c)
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A projective phase space for lattice-gauge theories

{t+ At} x =

/0
é

xS initial data formulation s
temporal gauge '

(M,g) 2R XZ _

{t — At} x X

finite-dimensional

projections §
Hamiltonian gauge-field formulation:

- 3 - Cauchy surface

- G - structure group (compact)

- A, E - gauge field, conjugate electric field
- D E = 0 - GauB constraint

Hamiltonian formulation:
- M = R X3 - Cauchy foliation

g Basic functionals:
Se - ge(A) - Holonomy
v - P$ (A, E; Se) - Flux

Phase space:
rcr = 1{111_Y T, cp. [Federbush, 1987]
r, = T*GlEM)]
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A projective phase space for lattice-gauge theories
Structure of the finite-dimensional phase spaces

The induced Poisson structure, e.g. [Thiemann, 2002]

Using a suitable regularization of the infinite-dimensional Poisson structure, the basic
functionals w.r.t. a given graph -y generate the G-CCR of T*GIEMI,

{f(ge), f'(ger)} (A, E) =0,
{P%, f'(9:)}+(A, E) = 6 (Rx f') (90 (A)),
{P%, P§ }.(A, E) = —68. o P& v (A, E)

Operations on graphs

The basic functionals behave naturally w.r.t. operations on graphs:

e=ez0e1: ge(A) = gey(A)ge, (A), (composition)
— — e~ 1 e g g

e e ig1(A) =g (A", P% (AE)= —PAdge(A)(X)(A,E), (inversion)

e — () : drop dependence. (removal)

Composition for fluxes

The behavior of fluxes w.r.t. composition is more complicated:
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A projective phase space for lattice-gauge theories
Some inductive constructions
Action of the gauge group

The gauge group G has a natural action on the finite-dimensional phase spaces.
— Gauge transformations act at the vertices of the graphs.

— The action on £(C*°(T';)) is induced by the action on convolution kernels:

oy ({go}vev ) (F)({(he; ge)}eem) = F({(og-1 (he), 9o1y9e9e(0)) Yec B(m)-

A non-commutative analog of '

Construct an inductive system of C*-algebras {2(,},, A = ling A,
e First try: A, = (C(G) x G)®1FM = c(L2(GIEMY)

— Does not work (non-unital).
@ Second try: 20, = M((C(G) x G)®IEMN) = B(L*(GIFMY)
— Works and has nice extension properties:

(a) Unique extension of morphisms,
(b) Embedding of C(GIEMI) and GIEMI

(c) Recovery of states on (C(G) x G)®|E(7)| as strictly-continuous states of 2.

v
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A projective phase space for lattice-gauge theories

Some questions

Some related questions

o Different choices of 2,7 Unital extensions of (C(G) % G)®|E(7)|?
@ Control on the state space of the inductive-limit algebra?
— The natural representation on L2(¥£nW GPON dpg) = ling LH(QIEMI guX1FDl)
is the GNS representation of the Ashtekar-Isham-Lewandowski state.

o Extensions to quantum groups?

@ More refined block spin transformations (cp. [Balaban et al., Federbush, 1980's])?
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An example: YM, on a space-time cylinder
Hq A,

° é@ % g R

3 / \ - —t t

e Y, % ’ ° % % % A
¥R = A4 () # RO (1) = 1ei

Construction of time-zero data
A local C*-algebra 2((I) is given as inductive limit over dyadic partitions of I C [0, 1]:

A(I) = {[£] : t a binary tree, a € ® Ay @1},

JEP:(I)

P,(I) is the partition given by ¢ subordinate to I. 2 is the algebra corresponding to the
leaf in J.

o 2 = A([0,1]) = lim, A, H = limy, H,
o A=2" A(I)=2A(I)" (requires a state).
v
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An example: YM, on a space-time cylinder

Locally thermal states
Consider the 3-KMS states associated with Hy:

wi? = W§)®, () = Zalar ' g2) " tr(exp(—BH) . ).

State consistency
The requirement that the 8-KMS states are consistent

N N N-1
wé )oaNflzwé )7

leads to (renormalization group flow):

2 2 912\1 g% 2
gN-1 =298y > >—=>= gy L.
an L <~

bare coupling

— The maps a¥N_, : Ax_1 — AN are non-trivial (block-spin transformations).
— The state on the field algebra Ag has a Thompson-group symmetry (discrete CFT).

— The B-limit Hamiltonian Héoo) is given by the modular Hamiltonian of wgoo).

v
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An example: YM, on a space-time cylinder

Field algebra

The net of gauge-field algberas {Ag(I)};cs1 forms a local, Thompson-covariant net:
(a) [As(D), Ag(N)] ={0} if InJ =0,

(b) py(As(I)) = As(gl),

(c) wgoo) 0 pg = w[(;o).

The algebras are expected to be generically of type Ill by an argument related to he
construction of the Powers factors [Powers, 1967].

Observable algebra

Implementing gauge-invariance, i.e. constructing Ag, Hg, gives

HS_y = L(G)*%, HE = HS(L*(G))™e, H=-1gLAg,

as expected. The Hamiltonian and the “area law” can be read of from the “state sum”:

@
Bo2ra, Lo [“689()” @ B=0
5(ar 'gi) dr € 2 —
1 : B e(0,0]
meC
v
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Thank you for your attention! )|
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